File size: 16,075 Bytes
5e1a30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
"""
NLP-based Query Analyzer Implementation.

This module provides query analysis using spaCy NLP capabilities for
entity extraction, linguistic analysis, and advanced query understanding.

Features:
- Named entity recognition
- Technical term extraction
- Linguistic complexity analysis
- Intent classification
- Query optimization suggestions
"""

import logging
from typing import Dict, Any, List, Optional, Set
from pathlib import Path
import sys

# Add project paths for imports
project_root = Path(__file__).parent.parent.parent.parent.parent
sys.path.append(str(project_root))

from ..base import QueryAnalysis
from .base_analyzer import BaseQueryAnalyzer

logger = logging.getLogger(__name__)


class NLPAnalyzer(BaseQueryAnalyzer):
    """
    NLP-based query analyzer using spaCy for linguistic analysis.
    
    This analyzer provides advanced query understanding by leveraging
    spaCy's NLP capabilities including entity recognition, POS tagging,
    dependency parsing, and technical term identification.
    
    Configuration Options:
    - model: spaCy model name (default: "en_core_web_sm")
    - extract_entities: Enable named entity recognition (default: True)
    - extract_technical_terms: Enable technical term detection (default: True)
    - complexity_scoring: Enable complexity scoring (default: True)
    - min_confidence: Minimum confidence for entity extraction (default: 0.7)
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """
        Initialize NLP analyzer with spaCy model.
        
        Args:
            config: Configuration dictionary
        """
        # Initialize attributes first before calling super().__init__
        self._nlp = None
        self._model_name = (config or {}).get('model', 'en_core_web_sm')
        self._extract_entities = (config or {}).get('extract_entities', True)
        self._extract_technical_terms = (config or {}).get('extract_technical_terms', True)
        self._complexity_scoring = (config or {}).get('complexity_scoring', True)
        self._min_confidence = (config or {}).get('min_confidence', 0.7)
        
        # Now call super().__init__ which may call configure()
        super().__init__(config)
        
        # Technical term patterns (can be extended via configuration)
        self._technical_patterns = set(self._config.get('technical_patterns', [
            'api', 'sdk', 'framework', 'library', 'protocol', 'algorithm',
            'implementation', 'architecture', 'design pattern', 'interface',
            'configuration', 'deployment', 'optimization', 'performance',
            'scalability', 'security', 'authentication', 'authorization',
            'database', 'query', 'index', 'cache', 'memory', 'cpu', 'processor',
            'network', 'http', 'tcp', 'udp', 'ssl', 'tls', 'json', 'xml',
            'yaml', 'markdown', 'regex', 'parse', 'serialize', 'encode',
            'decode', 'encrypt', 'decrypt', 'hash', 'token', 'session'
        ]))
        
        # Load spaCy model
        self._load_nlp_model()
    
    def _extract_basic_technical_terms(self, query: str) -> List[str]:
        """
        Extract technical terms using simple pattern matching when spaCy is not available.
        
        Args:
            query: Query string to analyze
            
        Returns:
            List of technical terms found
        """
        technical_terms = []
        query_lower = query.lower()
        
        # Check for individual technical patterns
        for pattern in self._technical_patterns:
            if pattern in query_lower:
                # Find the actual case-preserved term
                words = query.split()
                for word in words:
                    if word.lower() == pattern:
                        technical_terms.append(word)
                    elif pattern in word.lower():
                        technical_terms.append(word)
        
        # Remove duplicates while preserving order
        seen = set()
        unique_terms = []
        for term in technical_terms:
            if term.lower() not in seen:
                seen.add(term.lower())
                unique_terms.append(term)
        
        return unique_terms
    
    def _load_nlp_model(self) -> None:
        """Load spaCy NLP model with error handling."""
        try:
            import spacy
            
            # Try to load the model
            try:
                self._nlp = spacy.load(self._model_name)
                logger.info(f"Loaded spaCy model: {self._model_name}")
            except OSError:
                # Fallback to basic English model
                logger.warning(f"Model {self._model_name} not found, trying en_core_web_sm")
                self._nlp = spacy.load("en_core_web_sm")
                self._model_name = "en_core_web_sm"
            
        except ImportError:
            logger.error("spaCy not available, NLP analysis will be limited")
            self._nlp = None
        except Exception as e:
            logger.error(f"Failed to load spaCy model: {e}")
            self._nlp = None
    
    def _analyze_query(self, query: str) -> QueryAnalysis:
        """
        Perform NLP-based query analysis.
        
        Args:
            query: Clean, validated query string
            
        Returns:
            QueryAnalysis with NLP-extracted characteristics
        """
        # Start with basic features
        basic_features = self._extract_basic_features(query)
        
        # Perform NLP analysis if available
        if self._nlp is not None:
            nlp_features = self._extract_nlp_features(query)
            basic_features.update(nlp_features)
        else:
            logger.warning("NLP model not available, using basic analysis only")
            # Add basic technical term extraction when spaCy is not available
            basic_features['technical_terms'] = self._extract_basic_technical_terms(query)
        
        # Extract query characteristics
        entities = basic_features.get('entities', [])
        technical_terms = basic_features.get('technical_terms', [])
        complexity_score = self._calculate_complexity_score(query, basic_features)
        intent_category = self._determine_intent_category(query, basic_features)
        suggested_k = self._suggest_retrieval_k(query, basic_features)
        confidence = self._calculate_confidence(basic_features)
        
        # Epic 2 feature analysis
        epic2_features = self._analyze_epic2_features(query, basic_features)
        
        return QueryAnalysis(
            query=query,
            complexity_score=complexity_score,
            technical_terms=technical_terms,
            entities=entities,
            intent_category=intent_category,
            suggested_k=suggested_k,
            confidence=confidence,
            metadata={
                'analyzer_type': 'nlp',
                'model_used': self._model_name,
                'nlp_available': self._nlp is not None,
                'features': basic_features,
                'epic2_features': epic2_features,
                'analysis_version': '2.0'
            }
        )
    
    def _extract_nlp_features(self, query: str) -> Dict[str, Any]:
        """
        Extract features using spaCy NLP analysis.
        
        Args:
            query: Query string to analyze
            
        Returns:
            Dictionary with NLP-extracted features
        """
        features = {}
        
        try:
            # Process query with spaCy
            doc = self._nlp(query)
            
            # Extract named entities
            if self._extract_entities:
                entities = []
                for ent in doc.ents:
                    if ent.label_ in ['PERSON', 'ORG', 'PRODUCT', 'TECHNOLOGY']:
                        entities.append({
                            'text': ent.text,
                            'label': ent.label_,
                            'confidence': getattr(ent, 'confidence', 1.0)
                        })
                
                features['entities'] = [e['text'] for e in entities if e['confidence'] >= self._min_confidence]
                features['entity_details'] = entities
            
            # Extract technical terms
            if self._extract_technical_terms:
                technical_terms = self._extract_technical_terms_from_doc(doc)
                features['technical_terms'] = technical_terms
            
            # Linguistic analysis
            features['pos_tags'] = [token.pos_ for token in doc]
            features['dependencies'] = [(token.text, token.dep_, token.head.text) for token in doc]
            
            # Complexity indicators
            features['avg_word_length'] = sum(len(token.text) for token in doc if token.is_alpha) / max(1, sum(1 for token in doc if token.is_alpha))
            features['noun_count'] = sum(1 for token in doc if token.pos_ == 'NOUN')
            features['verb_count'] = sum(1 for token in doc if token.pos_ == 'VERB')
            features['adj_count'] = sum(1 for token in doc if token.pos_ == 'ADJ')
            
            # Sentence structure
            features['sentence_structures'] = []
            for sent in doc.sents:
                features['sentence_structures'].append({
                    'length': len([token for token in sent if token.is_alpha]),
                    'complexity': self._analyze_sentence_complexity(sent)
                })
            
        except Exception as e:
            logger.warning(f"NLP feature extraction failed: {e}")
            features['nlp_error'] = str(e)
        
        return features
    
    def _extract_technical_terms_from_doc(self, doc) -> List[str]:
        """
        Extract technical terms from spaCy document.
        
        Args:
            doc: spaCy document object
            
        Returns:
            List of technical terms found
        """
        technical_terms = []
        
        # Check individual tokens
        for token in doc:
            if token.text.lower() in self._technical_patterns:
                technical_terms.append(token.text)
        
        # Check noun phrases for multi-word technical terms
        for chunk in doc.noun_chunks:
            chunk_text = chunk.text.lower()
            if any(pattern in chunk_text for pattern in self._technical_patterns):
                technical_terms.append(chunk.text)
        
        # Remove duplicates while preserving order
        seen = set()
        unique_terms = []
        for term in technical_terms:
            if term.lower() not in seen:
                seen.add(term.lower())
                unique_terms.append(term)
        
        return unique_terms
    
    def _analyze_sentence_complexity(self, sent) -> str:
        """
        Analyze complexity of a single sentence.
        
        Args:
            sent: spaCy sentence object
            
        Returns:
            Complexity level: 'simple', 'medium', 'complex'
        """
        # Count syntactic features
        word_count = len([token for token in sent if token.is_alpha])
        clause_count = sum(1 for token in sent if token.dep_ in ['ccomp', 'xcomp', 'advcl'])
        subordinate_count = sum(1 for token in sent if token.dep_ in ['mark', 'prep'])
        
        # Determine complexity
        if word_count < 8 and clause_count == 0:
            return 'simple'
        elif word_count < 15 and clause_count <= 1:
            return 'medium'
        else:
            return 'complex'
    
    def _calculate_complexity_score(self, query: str, features: Dict[str, Any]) -> float:
        """
        Calculate numerical complexity score for the query.
        
        Args:
            query: Original query string
            features: Extracted features
            
        Returns:
            Complexity score between 0.0 and 1.0
        """
        if not self._complexity_scoring:
            return 0.5  # Default medium complexity
        
        score = 0.0
        
        # Word count factor (0.0 - 0.3)
        word_count = features.get('word_count', 0)
        word_factor = min(0.3, word_count / 20.0)
        score += word_factor
        
        # Technical terms factor (0.0 - 0.2)
        tech_terms = len(features.get('technical_terms', []))
        tech_factor = min(0.2, tech_terms / 5.0)
        score += tech_factor
        
        # Entity count factor (0.0 - 0.2)
        entities = len(features.get('entities', []))
        entity_factor = min(0.2, entities / 3.0)
        score += entity_factor
        
        # Linguistic complexity factor (0.0 - 0.3)
        if 'avg_word_length' in features:
            avg_word_len = features['avg_word_length']
            length_factor = min(0.15, (avg_word_len - 4.0) / 10.0) if avg_word_len > 4.0 else 0.0
            score += length_factor
        
        if 'sentence_structures' in features:
            complex_sentences = sum(1 for s in features['sentence_structures'] if s['complexity'] == 'complex')
            structure_factor = min(0.15, complex_sentences / 2.0)
            score += structure_factor
        
        return min(1.0, max(0.0, score))
    
    def _calculate_confidence(self, features: Dict[str, Any]) -> float:
        """
        Calculate confidence in the analysis results.
        
        Args:
            features: Extracted features
            
        Returns:
            Confidence score between 0.0 and 1.0
        """
        confidence = 0.5  # Base confidence
        
        # Higher confidence if NLP model worked
        if self._nlp is not None and 'nlp_error' not in features:
            confidence += 0.3
        
        # Higher confidence for queries with clear characteristics
        if features.get('technical_terms'):
            confidence += 0.1
        
        if features.get('entities'):
            confidence += 0.1
        
        if features.get('has_question_words'):
            confidence += 0.1
        
        return min(1.0, max(0.0, confidence))
    
    def get_supported_features(self) -> List[str]:
        """
        Return list of features this NLP analyzer supports.
        
        Returns:
            List of feature names
        """
        base_features = super().get_supported_features()
        nlp_features = [
            'entities',
            'technical_terms', 
            'complexity_scoring',
            'intent_classification',
            'linguistic_analysis',
            'pos_tagging',
            'dependency_parsing'
        ]
        
        if self._nlp is None:
            nlp_features = ['basic_' + feature for feature in nlp_features]
        
        return base_features + nlp_features
    
    def configure(self, config: Dict[str, Any]) -> None:
        """
        Configure the NLP analyzer with provided settings.
        
        Args:
            config: Configuration dictionary
        """
        super().configure(config)
        
        # Update NLP-specific configuration
        old_model = self._model_name
        self._model_name = config.get('model', self._model_name)
        self._extract_entities = config.get('extract_entities', self._extract_entities)
        self._extract_technical_terms = config.get('extract_technical_terms', self._extract_technical_terms)
        self._complexity_scoring = config.get('complexity_scoring', self._complexity_scoring)
        self._min_confidence = config.get('min_confidence', self._min_confidence)
        
        # Update technical patterns if provided
        if 'technical_patterns' in config:
            additional_patterns = config['technical_patterns']
            if isinstance(additional_patterns, list):
                self._technical_patterns.update(additional_patterns)
        
        # Reload model if changed
        if old_model != self._model_name:
            logger.info(f"Model changed from {old_model} to {self._model_name}, reloading...")
            self._load_nlp_model()