Spaces:
Sleeping
Sleeping
File size: 16,841 Bytes
5e1a30c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
"""
Rule-based Query Analyzer Implementation.
This module provides query analysis using rule-based heuristics and pattern
matching for fast, lightweight query understanding without external dependencies.
Features:
- Pattern-based intent classification
- Rule-based technical term detection
- Heuristic complexity scoring
- Fast performance for simple queries
- No external dependencies
"""
import re
import logging
from typing import Dict, Any, List, Optional, Set, Pattern
from pathlib import Path
import sys
# Add project paths for imports
project_root = Path(__file__).parent.parent.parent.parent.parent
sys.path.append(str(project_root))
from ..base import QueryAnalysis
from .base_analyzer import BaseQueryAnalyzer
logger = logging.getLogger(__name__)
class RuleBasedAnalyzer(BaseQueryAnalyzer):
"""
Rule-based query analyzer using pattern matching and heuristics.
This analyzer provides fast query analysis using predefined rules and
patterns without requiring external NLP libraries. It's optimized for
performance and reliability in production environments.
Configuration Options:
- enable_pattern_matching: Enable regex pattern matching (default: True)
- enable_technical_detection: Enable technical term detection (default: True)
- enable_intent_classification: Enable intent classification (default: True)
- custom_patterns: Custom regex patterns for specific domains
- technical_keywords: Additional technical keywords to detect
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""
Initialize rule-based analyzer with pattern configurations.
Args:
config: Configuration dictionary
"""
super().__init__(config)
# Configuration flags
self._enable_pattern_matching = self._config.get('enable_pattern_matching', True)
self._enable_technical_detection = self._config.get('enable_technical_detection', True)
self._enable_intent_classification = self._config.get('enable_intent_classification', True)
# Initialize pattern collections
self._init_intent_patterns()
self._init_technical_patterns()
self._init_complexity_patterns()
self._init_entity_patterns()
# Load custom patterns if provided
if 'custom_patterns' in self._config:
self._load_custom_patterns(self._config['custom_patterns'])
logger.info(f"Initialized RuleBasedAnalyzer with {len(self._intent_patterns)} intent patterns")
def _init_intent_patterns(self) -> None:
"""Initialize regex patterns for intent classification."""
self._intent_patterns = {
'definition': [
re.compile(r'\b(what\s+is|define|explain|meaning\s+of)\b', re.IGNORECASE),
re.compile(r'\b(what\s+does\s+\w+\s+mean)\b', re.IGNORECASE),
re.compile(r'\b(definition\s+of)\b', re.IGNORECASE)
],
'procedural': [
re.compile(r'\b(how\s+to|how\s+do|how\s+can)\b', re.IGNORECASE),
re.compile(r'\b(step\s+by\s+step|implement|configure|setup)\b', re.IGNORECASE),
re.compile(r'\b(create|build|develop|install)\b', re.IGNORECASE)
],
'comparison': [
re.compile(r'\b(compare|comparison|difference|vs|versus)\b', re.IGNORECASE),
re.compile(r'\b(better|worse|advantages|disadvantages)\b', re.IGNORECASE),
re.compile(r'\b(pros\s+and\s+cons|benefits)\b', re.IGNORECASE)
],
'example': [
re.compile(r'\b(example|sample|demo|demonstration)\b', re.IGNORECASE),
re.compile(r'\b(show\s+me|give\s+me|provide)\b', re.IGNORECASE),
re.compile(r'\b(tutorial|walkthrough)\b', re.IGNORECASE)
],
'troubleshooting': [
re.compile(r'\b(error|problem|issue|bug|fix)\b', re.IGNORECASE),
re.compile(r'\b(troubleshoot|debug|solve|resolve)\b', re.IGNORECASE),
re.compile(r'\b(why\s+is|why\s+does|not\s+working)\b', re.IGNORECASE)
],
'list': [
re.compile(r'\b(list|enumerate|all|every)\b', re.IGNORECASE),
re.compile(r'\b(what\s+are\s+the|which\s+are)\b', re.IGNORECASE),
re.compile(r'\b(types\s+of|kinds\s+of)\b', re.IGNORECASE)
]
}
def _init_technical_patterns(self) -> None:
"""Initialize patterns for technical term detection."""
# Technical keywords (extensible via configuration)
base_technical_keywords = [
'api', 'sdk', 'framework', 'library', 'protocol', 'algorithm',
'implementation', 'architecture', 'design', 'pattern', 'interface',
'configuration', 'deployment', 'optimization', 'performance',
'scalability', 'security', 'authentication', 'authorization',
'database', 'query', 'index', 'cache', 'memory', 'cpu',
'network', 'http', 'https', 'tcp', 'udp', 'ssl', 'tls',
'json', 'xml', 'yaml', 'csv', 'markdown', 'html', 'css',
'javascript', 'python', 'java', 'c++', 'rust', 'go',
'docker', 'kubernetes', 'microservice', 'rest', 'graphql',
'oauth', 'jwt', 'token', 'session', 'cookie', 'cors',
'webpack', 'npm', 'yarn', 'pip', 'maven', 'gradle',
'git', 'github', 'gitlab', 'cicd', 'devops', 'aws', 'azure'
]
# Add custom technical keywords from config
custom_keywords = self._config.get('technical_keywords', [])
all_keywords = base_technical_keywords + custom_keywords
# Create regex patterns for technical terms
self._technical_keywords = set(all_keywords)
self._technical_patterns = [
re.compile(rf'\b{re.escape(keyword)}\b', re.IGNORECASE)
for keyword in all_keywords
]
# Patterns for technical structures
self._technical_structure_patterns = [
re.compile(r'\b\w+\.\w+\.\w+\b'), # Package/module names (e.g., com.example.app)
re.compile(r'\b\w+::\w+\b'), # Namespace notation (e.g., std::vector)
re.compile(r'\b\w+\[\]\b'), # Array notation (e.g., int[])
re.compile(r'\b[A-Z][a-z]+[A-Z]\w*\b'), # CamelCase (likely class names)
re.compile(r'\b[a-z]+_[a-z_]+\b'), # snake_case (likely variables/functions)
re.compile(r'\b[A-Z_]{3,}\b'), # CONSTANTS
]
def _init_complexity_patterns(self) -> None:
"""Initialize patterns for complexity assessment."""
self._complexity_indicators = {
'high': [
re.compile(r'\b(implement|architecture|optimize|scale|performance)\b', re.IGNORECASE),
re.compile(r'\b(enterprise|production|distributed|microservice)\b', re.IGNORECASE),
re.compile(r'\b(security|authentication|authorization|encryption)\b', re.IGNORECASE)
],
'medium': [
re.compile(r'\b(configure|setup|install|deploy|integrate)\b', re.IGNORECASE),
re.compile(r'\b(database|api|framework|library)\b', re.IGNORECASE),
re.compile(r'\b(connect|parse|format|validate)\b', re.IGNORECASE)
],
'low': [
re.compile(r'\b(what|how|why|when|where)\b', re.IGNORECASE),
re.compile(r'\b(basic|simple|example|tutorial)\b', re.IGNORECASE),
re.compile(r'\b(hello\s+world|getting\s+started)\b', re.IGNORECASE)
]
}
def _init_entity_patterns(self) -> None:
"""Initialize patterns for entity detection."""
self._entity_patterns = {
'technology': re.compile(
r'\b(React|Vue|Angular|Django|Flask|Spring|Node\.js|Express|'
r'MongoDB|PostgreSQL|MySQL|Redis|Docker|Kubernetes|AWS|Azure|'
r'Python|JavaScript|TypeScript|Java|C\+\+|Rust|Go|Swift)\b'
),
'programming_concept': re.compile(
r'\b(class|function|method|variable|array|object|inheritance|'
r'polymorphism|encapsulation|recursion|algorithm|data\s+structure)\b',
re.IGNORECASE
),
'file_format': re.compile(
r'\b\w+\.(json|xml|yaml|yml|csv|txt|md|html|css|js|py|java|cpp|rs)\b',
re.IGNORECASE
)
}
def _load_custom_patterns(self, custom_patterns: Dict[str, Any]) -> None:
"""Load custom regex patterns from configuration."""
try:
for category, patterns in custom_patterns.items():
if isinstance(patterns, list):
compiled_patterns = [re.compile(pattern, re.IGNORECASE) for pattern in patterns]
if category in self._intent_patterns:
self._intent_patterns[category].extend(compiled_patterns)
else:
self._intent_patterns[category] = compiled_patterns
logger.debug(f"Loaded {len(custom_patterns)} custom pattern categories")
except Exception as e:
logger.warning(f"Failed to load custom patterns: {e}")
def _analyze_query(self, query: str) -> QueryAnalysis:
"""
Perform rule-based query analysis.
Args:
query: Clean, validated query string
Returns:
QueryAnalysis with rule-based extracted characteristics
"""
# Start with basic features
basic_features = self._extract_basic_features(query)
# Apply rule-based analysis
rule_features = {}
if self._enable_intent_classification:
intent_category = self._classify_intent(query)
rule_features['intent_category'] = intent_category
if self._enable_technical_detection:
technical_terms = self._extract_technical_terms(query)
rule_features['technical_terms'] = technical_terms
if self._enable_pattern_matching:
entities = self._extract_entities(query)
rule_features['entities'] = entities
# Combine features
all_features = {**basic_features, **rule_features}
# Calculate derived metrics
complexity_score = self._calculate_complexity_score(query, all_features)
intent_category = rule_features.get('intent_category', self._determine_intent_category(query, all_features))
suggested_k = self._suggest_retrieval_k(query, all_features)
confidence = self._calculate_confidence(all_features)
return QueryAnalysis(
query=query,
complexity_score=complexity_score,
technical_terms=rule_features.get('technical_terms', []),
entities=rule_features.get('entities', []),
intent_category=intent_category,
suggested_k=suggested_k,
confidence=confidence,
metadata={
'analyzer_type': 'rule_based',
'patterns_used': {
'intent_patterns': len(self._intent_patterns),
'technical_patterns': len(self._technical_patterns),
'entity_patterns': len(self._entity_patterns)
},
'features': all_features,
'analysis_version': '1.0'
}
)
def _classify_intent(self, query: str) -> str:
"""
Classify query intent using pattern matching.
Args:
query: Query string to classify
Returns:
Intent category string
"""
intent_scores = {}
for intent, patterns in self._intent_patterns.items():
score = 0
for pattern in patterns:
matches = pattern.findall(query)
score += len(matches)
if score > 0:
intent_scores[intent] = score
if intent_scores:
# Return intent with highest score
return max(intent_scores.items(), key=lambda x: x[1])[0]
else:
return 'general'
def _extract_technical_terms(self, query: str) -> List[str]:
"""
Extract technical terms using pattern matching.
Args:
query: Query string to analyze
Returns:
List of technical terms found
"""
technical_terms = []
# Check against known technical keywords
for pattern in self._technical_patterns:
matches = pattern.findall(query)
technical_terms.extend(matches)
# Check for technical structures
for pattern in self._technical_structure_patterns:
matches = pattern.findall(query)
technical_terms.extend(matches)
# Remove duplicates while preserving order
seen = set()
unique_terms = []
for term in technical_terms:
term_lower = term.lower()
if term_lower not in seen:
seen.add(term_lower)
unique_terms.append(term)
return unique_terms
def _extract_entities(self, query: str) -> List[str]:
"""
Extract entities using pattern matching.
Args:
query: Query string to analyze
Returns:
List of entities found
"""
entities = []
for entity_type, pattern in self._entity_patterns.items():
matches = pattern.findall(query)
entities.extend(matches)
# Remove duplicates
return list(set(entities))
def _calculate_complexity_score(self, query: str, features: Dict[str, Any]) -> float:
"""
Calculate complexity score using rule-based heuristics.
Args:
query: Original query string
features: Extracted features
Returns:
Complexity score between 0.0 and 1.0
"""
score = 0.0
# Check complexity indicator patterns
for complexity_level, patterns in self._complexity_indicators.items():
pattern_matches = sum(
len(pattern.findall(query)) for pattern in patterns
)
if complexity_level == 'high':
score += pattern_matches * 0.3
elif complexity_level == 'medium':
score += pattern_matches * 0.2
elif complexity_level == 'low':
score += pattern_matches * 0.1
# Technical terms add complexity
tech_term_count = len(features.get('technical_terms', []))
score += min(0.3, tech_term_count * 0.1)
# Query length factor
word_count = features.get('word_count', 0)
if word_count > 15:
score += 0.2
elif word_count > 10:
score += 0.1
# Multiple entities suggest complexity
entity_count = len(features.get('entities', []))
if entity_count > 2:
score += 0.2
elif entity_count > 0:
score += 0.1
return min(1.0, max(0.0, score))
def _calculate_confidence(self, features: Dict[str, Any]) -> float:
"""
Calculate confidence in rule-based analysis.
Args:
features: Extracted features
Returns:
Confidence score between 0.0 and 1.0
"""
confidence = 0.7 # Base confidence for rule-based analysis
# Higher confidence when patterns match
if features.get('intent_category') != 'general':
confidence += 0.15
if features.get('technical_terms'):
confidence += 0.1
if features.get('entities'):
confidence += 0.05
return min(1.0, max(0.0, confidence))
def get_supported_features(self) -> List[str]:
"""
Return list of features this rule-based analyzer supports.
Returns:
List of feature names
"""
base_features = super().get_supported_features()
rule_features = [
'intent_classification',
'technical_term_detection',
'entity_extraction',
'complexity_scoring',
'pattern_matching',
'fast_analysis'
]
return base_features + rule_features |