File size: 20,129 Bytes
5e1a30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
"""
Base Response Assembler Implementation.

This module provides concrete base functionality for response assembly
components, implementing common patterns for Answer object creation and metadata handling.
"""

import time
import logging
from typing import Dict, Any, List, Optional
from pathlib import Path
import sys

# Add project paths for imports
project_root = Path(__file__).parent.parent.parent.parent.parent
sys.path.append(str(project_root))

from ..base import ResponseAssembler, ContextSelection, QueryAnalysis
from src.core.interfaces import Answer, Document

logger = logging.getLogger(__name__)


class BaseResponseAssembler(ResponseAssembler):
    """
    Base implementation providing common functionality for all response assemblers.
    
    This class implements common patterns like Answer object creation,
    metadata handling, and performance tracking that can be reused by
    concrete assembler implementations.
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """
        Initialize base response assembler with configuration.
        
        Args:
            config: Configuration dictionary
        """
        self._config = config or {}
        self._performance_metrics = {
            'total_assemblies': 0,
            'average_time_ms': 0.0,
            'failed_assemblies': 0,
            'average_metadata_fields': 0.0
        }
        
        # Assembly configuration
        self._include_sources = self._config.get('include_sources', True)
        self._include_metadata = self._config.get('include_metadata', True)
        self._format_citations = self._config.get('format_citations', True)
        self._max_source_length = self._config.get('max_source_length', 500)
        
        # Configure based on provided settings
        self.configure(self._config)
        
        logger.debug(f"Initialized {self.__class__.__name__} with config: {self._config}")
    
    def assemble(
        self,
        query: str,
        answer_text: str, 
        context: ContextSelection,
        confidence: float,
        query_analysis: Optional[QueryAnalysis] = None,
        generation_metadata: Optional[Dict[str, Any]] = None
    ) -> Answer:
        """
        Assemble Answer object with performance tracking and error handling.
        
        Args:
            query: Original user query
            answer_text: Generated answer text
            context: Selected context from ContextSelector
            confidence: Answer confidence score
            query_analysis: Optional query analysis metadata
            generation_metadata: Optional metadata from answer generation
            
        Returns:
            Complete Answer object with sources and metadata
            
        Raises:
            ValueError: If required parameters are missing
            RuntimeError: If assembly fails
        """
        # Validate inputs
        if not answer_text or not answer_text.strip():
            raise ValueError("Answer text cannot be empty")
        
        if not 0.0 <= confidence <= 1.0:
            logger.warning(f"Invalid confidence {confidence}, clamping to [0,1]")
            confidence = max(0.0, min(1.0, confidence))
        
        start_time = time.time()
        
        try:
            # Perform actual assembly (implemented by subclasses)
            result = self._assemble_answer(
                query, answer_text, context, confidence, query_analysis, generation_metadata
            )
            
            # Enhance with Epic 2 features if available
            if query_analysis and 'epic2_features' in query_analysis.metadata:
                result = self._enhance_with_epic2_features(result, query_analysis)
            
            # Track performance
            assembly_time = time.time() - start_time
            metadata_field_count = len(result.metadata) if result.metadata else 0
            self._update_performance_metrics(assembly_time, metadata_field_count, success=True)
            
            logger.debug(f"Answer assembly completed in {assembly_time*1000:.1f}ms")
            return result
            
        except Exception as e:
            assembly_time = time.time() - start_time
            self._update_performance_metrics(assembly_time, 0, success=False)
            
            logger.error(f"Answer assembly failed after {assembly_time*1000:.1f}ms: {e}")
            raise RuntimeError(f"Answer assembly failed: {e}") from e
    
    def _assemble_answer(
        self,
        query: str,
        answer_text: str, 
        context: ContextSelection,
        confidence: float,
        query_analysis: Optional[QueryAnalysis] = None,
        generation_metadata: Optional[Dict[str, Any]] = None
    ) -> Answer:
        """
        Perform actual answer assembly (must be implemented by subclasses).
        
        Args:
            query: Validated query string
            answer_text: Validated answer text
            context: Context selection
            confidence: Validated confidence score
            query_analysis: Optional query analysis
            generation_metadata: Optional generation metadata
            
        Returns:
            Complete Answer object
        """
        raise NotImplementedError("Subclasses must implement _assemble_answer")
    
    def get_supported_formats(self) -> List[str]:
        """
        Return base formats supported by all assemblers.
        
        Subclasses should override and extend this list.
        
        Returns:
            List of format names
        """
        return ["standard"]
    
    def configure(self, config: Dict[str, Any]) -> None:
        """
        Configure the assembler with provided settings.
        
        Args:
            config: Configuration dictionary
        """
        self._config.update(config)
        
        # Apply common configuration
        self._include_sources = config.get('include_sources', self._include_sources)
        self._include_metadata = config.get('include_metadata', self._include_metadata)
        self._format_citations = config.get('format_citations', self._format_citations)
        self._max_source_length = config.get('max_source_length', self._max_source_length)
        
        if 'enable_metrics' in config:
            self._track_metrics = config['enable_metrics']
        else:
            self._track_metrics = True  # Default enable metrics
    
    def get_performance_metrics(self) -> Dict[str, Any]:
        """
        Get performance metrics for this assembler.
        
        Returns:
            Dictionary with performance statistics
        """
        return self._performance_metrics.copy()
    
    def _update_performance_metrics(
        self, 
        assembly_time: float, 
        metadata_fields: int,
        success: bool
    ) -> None:
        """
        Update internal performance metrics.
        
        Args:
            assembly_time: Time taken for assembly in seconds
            metadata_fields: Number of metadata fields created
            success: Whether assembly succeeded
        """
        if not self._track_metrics:
            return
        
        self._performance_metrics['total_assemblies'] += 1
        
        if success:
            # Update average time using incremental formula
            total_successful = self._performance_metrics['total_assemblies'] - self._performance_metrics['failed_assemblies']
            current_avg_time = self._performance_metrics['average_time_ms']
            self._performance_metrics['average_time_ms'] = (
                (current_avg_time * (total_successful - 1) + assembly_time * 1000) / total_successful
            )
            
            # Update average metadata fields
            current_avg_fields = self._performance_metrics['average_metadata_fields']
            self._performance_metrics['average_metadata_fields'] = (
                (current_avg_fields * (total_successful - 1) + metadata_fields) / total_successful
            )
        else:
            self._performance_metrics['failed_assemblies'] += 1
    
    def _create_sources_list(self, context: ContextSelection) -> List[Document]:
        """
        Create sources list from context selection.
        
        Args:
            context: Context selection with documents
            
        Returns:
            List of source documents
        """
        if not self._include_sources or not context.selected_documents:
            return []
        
        sources = []
        for doc in context.selected_documents:
            # Optionally truncate very long documents in sources
            if self._max_source_length > 0 and len(doc.content) > self._max_source_length:
                # Create a truncated copy
                truncated_content = doc.content[:self._max_source_length] + "..."
                # Copy metadata and add source info there
                truncated_metadata = doc.metadata.copy()
                if hasattr(doc, 'source'):
                    truncated_metadata['source'] = doc.source
                elif 'source' not in truncated_metadata:
                    truncated_metadata['source'] = truncated_metadata.get('source', 'unknown')
                    
                if hasattr(doc, 'chunk_id'):
                    truncated_metadata['chunk_id'] = doc.chunk_id
                elif 'chunk_id' not in truncated_metadata:
                    truncated_metadata['chunk_id'] = truncated_metadata.get('chunk_id', 'unknown')
                
                truncated_doc = Document(
                    content=truncated_content,
                    metadata=truncated_metadata,
                    embedding=None  # Don't include large embedding in sources
                )
                sources.append(truncated_doc)
            else:
                # Create clean copy without embedding for sources
                clean_metadata = doc.metadata.copy()
                if hasattr(doc, 'source'):
                    clean_metadata['source'] = doc.source
                elif 'source' not in clean_metadata:
                    clean_metadata['source'] = clean_metadata.get('source', 'unknown')
                    
                if hasattr(doc, 'chunk_id'):
                    clean_metadata['chunk_id'] = doc.chunk_id
                elif 'chunk_id' not in clean_metadata:
                    clean_metadata['chunk_id'] = clean_metadata.get('chunk_id', 'unknown')
                
                clean_doc = Document(
                    content=doc.content,
                    metadata=clean_metadata,
                    embedding=None
                )
                sources.append(clean_doc)
        
        return sources
    
    def _create_base_metadata(
        self,
        query: str,
        context: ContextSelection,
        query_analysis: Optional[QueryAnalysis] = None,
        generation_metadata: Optional[Dict[str, Any]] = None
    ) -> Dict[str, Any]:
        """
        Create base metadata that all assemblers include.
        
        Args:
            query: Original query
            context: Context selection
            query_analysis: Optional query analysis
            generation_metadata: Optional generation metadata
            
        Returns:
            Base metadata dictionary
        """
        metadata = {}
        
        if self._include_metadata:
            # Query information
            metadata['query'] = query
            metadata['query_length'] = len(query)
            
            # Context information
            metadata['retrieved_docs'] = len(context.selected_documents)
            metadata['total_tokens'] = context.total_tokens
            metadata['selection_strategy'] = context.selection_strategy
            
            # Context quality metrics
            if hasattr(context, 'diversity_score') and context.diversity_score is not None:
                metadata['diversity_score'] = context.diversity_score
            
            if hasattr(context, 'relevance_score') and context.relevance_score is not None:
                metadata['relevance_score'] = context.relevance_score
            
            # Query analysis information
            if query_analysis:
                metadata['query_complexity'] = query_analysis.complexity_score
                metadata['query_intent'] = query_analysis.intent_category
                metadata['technical_terms_count'] = len(query_analysis.technical_terms)
                metadata['entities_count'] = len(query_analysis.entities)
            
            # Generation information
            if generation_metadata:
                # Include relevant generation metadata
                for key in ['generation_time', 'model', 'provider', 'temperature']:
                    if key in generation_metadata:
                        metadata[key] = generation_metadata[key]
            
            # Assembly information
            metadata['assembler_type'] = self._get_assembler_type()
        
        return metadata
    
    def _get_assembler_type(self) -> str:
        """
        Get the type name of this assembler.
        
        Returns:
            Assembler type string
        """
        return self.__class__.__name__.lower().replace('assembler', '')
    
    def _format_answer_text(self, answer_text: str) -> str:
        """
        Format answer text (can be overridden by subclasses).
        
        Args:
            answer_text: Raw answer text
            
        Returns:
            Formatted answer text
        """
        # Base implementation just cleans whitespace
        return answer_text.strip()
    
    def _extract_citations_from_text(self, text: str) -> List[str]:
        """
        Extract citation references from answer text.
        
        Args:
            text: Answer text to analyze
            
        Returns:
            List of citation references found
        """
        import re
        
        citations = []
        
        # Common citation patterns
        patterns = [
            r'\[Document \d+\]',      # [Document 1]
            r'\[chunk_\d+\]',         # [chunk_1]
            r'\[\d+\]',               # [1]
            r'\[Document \d+, Page \d+\]'  # [Document 1, Page 5]
        ]
        
        for pattern in patterns:
            matches = re.findall(pattern, text)
            citations.extend(matches)
        
        # Remove duplicates while preserving order
        unique_citations = []
        seen = set()
        for citation in citations:
            if citation not in seen:
                seen.add(citation)
                unique_citations.append(citation)
        
        return unique_citations
    
    def _enhance_with_epic2_features(self, answer: Answer, query_analysis: QueryAnalysis) -> Answer:
        """
        Enhance Answer object with Epic 2 feature information.
        
        Args:
            answer: Base Answer object
            query_analysis: Query analysis with Epic 2 features
            
        Returns:
            Enhanced Answer object with Epic 2 metadata
        """
        epic2_features = query_analysis.metadata.get('epic2_features', {})
        
        # Add Epic 2 features to metadata
        if answer.metadata is None:
            answer.metadata = {}
        
        answer.metadata['epic2_features'] = epic2_features
        
        # Add neural reranking information if enabled
        if epic2_features.get('neural_reranking', {}).get('enabled'):
            neural_info = epic2_features['neural_reranking']
            answer.metadata['neural_reranking'] = {
                'enabled': True,
                'benefit_score': neural_info.get('benefit_score', 0.0),
                'reason': neural_info.get('reason', 'Neural reranking applied'),
                'performance_impact': 'Enhanced semantic matching'
            }
        
        # Add graph enhancement information if enabled
        if epic2_features.get('graph_enhancement', {}).get('enabled'):
            graph_info = epic2_features['graph_enhancement']
            answer.metadata['graph_enhancement'] = {
                'enabled': True,
                'benefit_score': graph_info.get('benefit_score', 0.0),
                'reason': graph_info.get('reason', 'Graph enhancement applied'),
                'performance_impact': 'Enhanced entity relationships'
            }
        
        # Add hybrid weights optimization
        if 'hybrid_weights' in epic2_features:
            hybrid_weights = epic2_features['hybrid_weights']
            answer.metadata['hybrid_weights'] = hybrid_weights
            answer.metadata['retrieval_optimization'] = {
                'dense_weight': hybrid_weights.get('dense_weight', 0.6),
                'sparse_weight': hybrid_weights.get('sparse_weight', 0.3),
                'graph_weight': hybrid_weights.get('graph_weight', 0.1),
                'optimization_reason': 'Weights optimized based on query characteristics'
            }
        
        # Add performance predictions
        if 'performance_prediction' in epic2_features:
            performance = epic2_features['performance_prediction']
            answer.metadata['performance_prediction'] = {
                'estimated_latency_ms': performance.get('estimated_latency_ms', 500),
                'quality_improvement': performance.get('quality_improvement', 0.0),
                'resource_impact': performance.get('resource_impact', 'low'),
                'prediction_confidence': 'Medium'
            }
        
        # Add Epic 2 processing summary
        epic2_summary = {
            'features_applied': [],
            'total_benefit_score': 0.0,
            'processing_overhead_ms': 0
        }
        
        for feature_name, feature_data in epic2_features.items():
            if isinstance(feature_data, dict) and feature_data.get('enabled'):
                epic2_summary['features_applied'].append(feature_name)
                epic2_summary['total_benefit_score'] += feature_data.get('benefit_score', 0.0)
                
                # Estimate processing overhead
                if feature_name == 'neural_reranking':
                    epic2_summary['processing_overhead_ms'] += 200
                elif feature_name == 'graph_enhancement':
                    epic2_summary['processing_overhead_ms'] += 100
        
        answer.metadata['epic2_summary'] = epic2_summary
        
        # Enhance answer text with Epic 2 feature indicators (if configured)
        if self._config.get('include_epic2_indicators', False):
            answer = self._add_epic2_indicators_to_text(answer, epic2_features)
        
        return answer
    
    def _add_epic2_indicators_to_text(self, answer: Answer, epic2_features: Dict[str, Any]) -> Answer:
        """
        Add Epic 2 feature indicators to answer text.
        
        Args:
            answer: Answer object to enhance
            epic2_features: Epic 2 feature information
            
        Returns:
            Answer with enhanced text
        """
        indicators = []
        
        if epic2_features.get('neural_reranking', {}).get('enabled'):
            indicators.append("🧠 Neural reranking applied for enhanced semantic matching")
        
        if epic2_features.get('graph_enhancement', {}).get('enabled'):
            indicators.append("🌐 Graph enhancement applied for entity relationships")
        
        if indicators and self._config.get('epic2_indicator_placement', 'footer') == 'footer':
            # Add indicators as footer
            footer_text = "\n\n---\n" + "\n".join(f"β€’ {indicator}" for indicator in indicators)
            answer.text = answer.text + footer_text
        elif indicators and self._config.get('epic2_indicator_placement', 'footer') == 'header':
            # Add indicators as header
            header_text = "\n".join(f"β€’ {indicator}" for indicator in indicators) + "\n\n---\n"
            answer.text = header_text + answer.text
        
        return answer