Spaces:
Sleeping
Sleeping
File size: 20,129 Bytes
5e1a30c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
"""
Base Response Assembler Implementation.
This module provides concrete base functionality for response assembly
components, implementing common patterns for Answer object creation and metadata handling.
"""
import time
import logging
from typing import Dict, Any, List, Optional
from pathlib import Path
import sys
# Add project paths for imports
project_root = Path(__file__).parent.parent.parent.parent.parent
sys.path.append(str(project_root))
from ..base import ResponseAssembler, ContextSelection, QueryAnalysis
from src.core.interfaces import Answer, Document
logger = logging.getLogger(__name__)
class BaseResponseAssembler(ResponseAssembler):
"""
Base implementation providing common functionality for all response assemblers.
This class implements common patterns like Answer object creation,
metadata handling, and performance tracking that can be reused by
concrete assembler implementations.
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""
Initialize base response assembler with configuration.
Args:
config: Configuration dictionary
"""
self._config = config or {}
self._performance_metrics = {
'total_assemblies': 0,
'average_time_ms': 0.0,
'failed_assemblies': 0,
'average_metadata_fields': 0.0
}
# Assembly configuration
self._include_sources = self._config.get('include_sources', True)
self._include_metadata = self._config.get('include_metadata', True)
self._format_citations = self._config.get('format_citations', True)
self._max_source_length = self._config.get('max_source_length', 500)
# Configure based on provided settings
self.configure(self._config)
logger.debug(f"Initialized {self.__class__.__name__} with config: {self._config}")
def assemble(
self,
query: str,
answer_text: str,
context: ContextSelection,
confidence: float,
query_analysis: Optional[QueryAnalysis] = None,
generation_metadata: Optional[Dict[str, Any]] = None
) -> Answer:
"""
Assemble Answer object with performance tracking and error handling.
Args:
query: Original user query
answer_text: Generated answer text
context: Selected context from ContextSelector
confidence: Answer confidence score
query_analysis: Optional query analysis metadata
generation_metadata: Optional metadata from answer generation
Returns:
Complete Answer object with sources and metadata
Raises:
ValueError: If required parameters are missing
RuntimeError: If assembly fails
"""
# Validate inputs
if not answer_text or not answer_text.strip():
raise ValueError("Answer text cannot be empty")
if not 0.0 <= confidence <= 1.0:
logger.warning(f"Invalid confidence {confidence}, clamping to [0,1]")
confidence = max(0.0, min(1.0, confidence))
start_time = time.time()
try:
# Perform actual assembly (implemented by subclasses)
result = self._assemble_answer(
query, answer_text, context, confidence, query_analysis, generation_metadata
)
# Enhance with Epic 2 features if available
if query_analysis and 'epic2_features' in query_analysis.metadata:
result = self._enhance_with_epic2_features(result, query_analysis)
# Track performance
assembly_time = time.time() - start_time
metadata_field_count = len(result.metadata) if result.metadata else 0
self._update_performance_metrics(assembly_time, metadata_field_count, success=True)
logger.debug(f"Answer assembly completed in {assembly_time*1000:.1f}ms")
return result
except Exception as e:
assembly_time = time.time() - start_time
self._update_performance_metrics(assembly_time, 0, success=False)
logger.error(f"Answer assembly failed after {assembly_time*1000:.1f}ms: {e}")
raise RuntimeError(f"Answer assembly failed: {e}") from e
def _assemble_answer(
self,
query: str,
answer_text: str,
context: ContextSelection,
confidence: float,
query_analysis: Optional[QueryAnalysis] = None,
generation_metadata: Optional[Dict[str, Any]] = None
) -> Answer:
"""
Perform actual answer assembly (must be implemented by subclasses).
Args:
query: Validated query string
answer_text: Validated answer text
context: Context selection
confidence: Validated confidence score
query_analysis: Optional query analysis
generation_metadata: Optional generation metadata
Returns:
Complete Answer object
"""
raise NotImplementedError("Subclasses must implement _assemble_answer")
def get_supported_formats(self) -> List[str]:
"""
Return base formats supported by all assemblers.
Subclasses should override and extend this list.
Returns:
List of format names
"""
return ["standard"]
def configure(self, config: Dict[str, Any]) -> None:
"""
Configure the assembler with provided settings.
Args:
config: Configuration dictionary
"""
self._config.update(config)
# Apply common configuration
self._include_sources = config.get('include_sources', self._include_sources)
self._include_metadata = config.get('include_metadata', self._include_metadata)
self._format_citations = config.get('format_citations', self._format_citations)
self._max_source_length = config.get('max_source_length', self._max_source_length)
if 'enable_metrics' in config:
self._track_metrics = config['enable_metrics']
else:
self._track_metrics = True # Default enable metrics
def get_performance_metrics(self) -> Dict[str, Any]:
"""
Get performance metrics for this assembler.
Returns:
Dictionary with performance statistics
"""
return self._performance_metrics.copy()
def _update_performance_metrics(
self,
assembly_time: float,
metadata_fields: int,
success: bool
) -> None:
"""
Update internal performance metrics.
Args:
assembly_time: Time taken for assembly in seconds
metadata_fields: Number of metadata fields created
success: Whether assembly succeeded
"""
if not self._track_metrics:
return
self._performance_metrics['total_assemblies'] += 1
if success:
# Update average time using incremental formula
total_successful = self._performance_metrics['total_assemblies'] - self._performance_metrics['failed_assemblies']
current_avg_time = self._performance_metrics['average_time_ms']
self._performance_metrics['average_time_ms'] = (
(current_avg_time * (total_successful - 1) + assembly_time * 1000) / total_successful
)
# Update average metadata fields
current_avg_fields = self._performance_metrics['average_metadata_fields']
self._performance_metrics['average_metadata_fields'] = (
(current_avg_fields * (total_successful - 1) + metadata_fields) / total_successful
)
else:
self._performance_metrics['failed_assemblies'] += 1
def _create_sources_list(self, context: ContextSelection) -> List[Document]:
"""
Create sources list from context selection.
Args:
context: Context selection with documents
Returns:
List of source documents
"""
if not self._include_sources or not context.selected_documents:
return []
sources = []
for doc in context.selected_documents:
# Optionally truncate very long documents in sources
if self._max_source_length > 0 and len(doc.content) > self._max_source_length:
# Create a truncated copy
truncated_content = doc.content[:self._max_source_length] + "..."
# Copy metadata and add source info there
truncated_metadata = doc.metadata.copy()
if hasattr(doc, 'source'):
truncated_metadata['source'] = doc.source
elif 'source' not in truncated_metadata:
truncated_metadata['source'] = truncated_metadata.get('source', 'unknown')
if hasattr(doc, 'chunk_id'):
truncated_metadata['chunk_id'] = doc.chunk_id
elif 'chunk_id' not in truncated_metadata:
truncated_metadata['chunk_id'] = truncated_metadata.get('chunk_id', 'unknown')
truncated_doc = Document(
content=truncated_content,
metadata=truncated_metadata,
embedding=None # Don't include large embedding in sources
)
sources.append(truncated_doc)
else:
# Create clean copy without embedding for sources
clean_metadata = doc.metadata.copy()
if hasattr(doc, 'source'):
clean_metadata['source'] = doc.source
elif 'source' not in clean_metadata:
clean_metadata['source'] = clean_metadata.get('source', 'unknown')
if hasattr(doc, 'chunk_id'):
clean_metadata['chunk_id'] = doc.chunk_id
elif 'chunk_id' not in clean_metadata:
clean_metadata['chunk_id'] = clean_metadata.get('chunk_id', 'unknown')
clean_doc = Document(
content=doc.content,
metadata=clean_metadata,
embedding=None
)
sources.append(clean_doc)
return sources
def _create_base_metadata(
self,
query: str,
context: ContextSelection,
query_analysis: Optional[QueryAnalysis] = None,
generation_metadata: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""
Create base metadata that all assemblers include.
Args:
query: Original query
context: Context selection
query_analysis: Optional query analysis
generation_metadata: Optional generation metadata
Returns:
Base metadata dictionary
"""
metadata = {}
if self._include_metadata:
# Query information
metadata['query'] = query
metadata['query_length'] = len(query)
# Context information
metadata['retrieved_docs'] = len(context.selected_documents)
metadata['total_tokens'] = context.total_tokens
metadata['selection_strategy'] = context.selection_strategy
# Context quality metrics
if hasattr(context, 'diversity_score') and context.diversity_score is not None:
metadata['diversity_score'] = context.diversity_score
if hasattr(context, 'relevance_score') and context.relevance_score is not None:
metadata['relevance_score'] = context.relevance_score
# Query analysis information
if query_analysis:
metadata['query_complexity'] = query_analysis.complexity_score
metadata['query_intent'] = query_analysis.intent_category
metadata['technical_terms_count'] = len(query_analysis.technical_terms)
metadata['entities_count'] = len(query_analysis.entities)
# Generation information
if generation_metadata:
# Include relevant generation metadata
for key in ['generation_time', 'model', 'provider', 'temperature']:
if key in generation_metadata:
metadata[key] = generation_metadata[key]
# Assembly information
metadata['assembler_type'] = self._get_assembler_type()
return metadata
def _get_assembler_type(self) -> str:
"""
Get the type name of this assembler.
Returns:
Assembler type string
"""
return self.__class__.__name__.lower().replace('assembler', '')
def _format_answer_text(self, answer_text: str) -> str:
"""
Format answer text (can be overridden by subclasses).
Args:
answer_text: Raw answer text
Returns:
Formatted answer text
"""
# Base implementation just cleans whitespace
return answer_text.strip()
def _extract_citations_from_text(self, text: str) -> List[str]:
"""
Extract citation references from answer text.
Args:
text: Answer text to analyze
Returns:
List of citation references found
"""
import re
citations = []
# Common citation patterns
patterns = [
r'\[Document \d+\]', # [Document 1]
r'\[chunk_\d+\]', # [chunk_1]
r'\[\d+\]', # [1]
r'\[Document \d+, Page \d+\]' # [Document 1, Page 5]
]
for pattern in patterns:
matches = re.findall(pattern, text)
citations.extend(matches)
# Remove duplicates while preserving order
unique_citations = []
seen = set()
for citation in citations:
if citation not in seen:
seen.add(citation)
unique_citations.append(citation)
return unique_citations
def _enhance_with_epic2_features(self, answer: Answer, query_analysis: QueryAnalysis) -> Answer:
"""
Enhance Answer object with Epic 2 feature information.
Args:
answer: Base Answer object
query_analysis: Query analysis with Epic 2 features
Returns:
Enhanced Answer object with Epic 2 metadata
"""
epic2_features = query_analysis.metadata.get('epic2_features', {})
# Add Epic 2 features to metadata
if answer.metadata is None:
answer.metadata = {}
answer.metadata['epic2_features'] = epic2_features
# Add neural reranking information if enabled
if epic2_features.get('neural_reranking', {}).get('enabled'):
neural_info = epic2_features['neural_reranking']
answer.metadata['neural_reranking'] = {
'enabled': True,
'benefit_score': neural_info.get('benefit_score', 0.0),
'reason': neural_info.get('reason', 'Neural reranking applied'),
'performance_impact': 'Enhanced semantic matching'
}
# Add graph enhancement information if enabled
if epic2_features.get('graph_enhancement', {}).get('enabled'):
graph_info = epic2_features['graph_enhancement']
answer.metadata['graph_enhancement'] = {
'enabled': True,
'benefit_score': graph_info.get('benefit_score', 0.0),
'reason': graph_info.get('reason', 'Graph enhancement applied'),
'performance_impact': 'Enhanced entity relationships'
}
# Add hybrid weights optimization
if 'hybrid_weights' in epic2_features:
hybrid_weights = epic2_features['hybrid_weights']
answer.metadata['hybrid_weights'] = hybrid_weights
answer.metadata['retrieval_optimization'] = {
'dense_weight': hybrid_weights.get('dense_weight', 0.6),
'sparse_weight': hybrid_weights.get('sparse_weight', 0.3),
'graph_weight': hybrid_weights.get('graph_weight', 0.1),
'optimization_reason': 'Weights optimized based on query characteristics'
}
# Add performance predictions
if 'performance_prediction' in epic2_features:
performance = epic2_features['performance_prediction']
answer.metadata['performance_prediction'] = {
'estimated_latency_ms': performance.get('estimated_latency_ms', 500),
'quality_improvement': performance.get('quality_improvement', 0.0),
'resource_impact': performance.get('resource_impact', 'low'),
'prediction_confidence': 'Medium'
}
# Add Epic 2 processing summary
epic2_summary = {
'features_applied': [],
'total_benefit_score': 0.0,
'processing_overhead_ms': 0
}
for feature_name, feature_data in epic2_features.items():
if isinstance(feature_data, dict) and feature_data.get('enabled'):
epic2_summary['features_applied'].append(feature_name)
epic2_summary['total_benefit_score'] += feature_data.get('benefit_score', 0.0)
# Estimate processing overhead
if feature_name == 'neural_reranking':
epic2_summary['processing_overhead_ms'] += 200
elif feature_name == 'graph_enhancement':
epic2_summary['processing_overhead_ms'] += 100
answer.metadata['epic2_summary'] = epic2_summary
# Enhance answer text with Epic 2 feature indicators (if configured)
if self._config.get('include_epic2_indicators', False):
answer = self._add_epic2_indicators_to_text(answer, epic2_features)
return answer
def _add_epic2_indicators_to_text(self, answer: Answer, epic2_features: Dict[str, Any]) -> Answer:
"""
Add Epic 2 feature indicators to answer text.
Args:
answer: Answer object to enhance
epic2_features: Epic 2 feature information
Returns:
Answer with enhanced text
"""
indicators = []
if epic2_features.get('neural_reranking', {}).get('enabled'):
indicators.append("π§ Neural reranking applied for enhanced semantic matching")
if epic2_features.get('graph_enhancement', {}).get('enabled'):
indicators.append("π Graph enhancement applied for entity relationships")
if indicators and self._config.get('epic2_indicator_placement', 'footer') == 'footer':
# Add indicators as footer
footer_text = "\n\n---\n" + "\n".join(f"β’ {indicator}" for indicator in indicators)
answer.text = answer.text + footer_text
elif indicators and self._config.get('epic2_indicator_placement', 'footer') == 'header':
# Add indicators as header
header_text = "\n".join(f"β’ {indicator}" for indicator in indicators) + "\n\n---\n"
answer.text = header_text + answer.text
return answer |