File size: 9,198 Bytes
5e1a30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""
Standard Response Assembler Implementation.

This module provides minimal overhead response assembly for performance-critical
applications where basic Answer objects are sufficient.

Features:
- Minimal metadata overhead
- Fast assembly performance
- Essential source information only
- Lightweight configuration
"""

import logging
from typing import Dict, Any, List, Optional
from pathlib import Path
import sys

# Add project paths for imports
project_root = Path(__file__).parent.parent.parent.parent.parent
sys.path.append(str(project_root))

from ..base import ContextSelection, QueryAnalysis
from .base_assembler import BaseResponseAssembler
from src.core.interfaces import Answer, Document

logger = logging.getLogger(__name__)


class StandardAssembler(BaseResponseAssembler):
    """
    Standard response assembler with minimal overhead.
    
    This assembler creates Answer objects with essential information only,
    optimized for performance-critical applications where detailed metadata
    is not required.
    
    Configuration Options:
    - minimal_metadata: Use absolute minimum metadata (default: False)
    - include_basic_stats: Include basic statistics (default: True)
    - strip_large_sources: Remove large document content from sources (default: True)
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """
        Initialize standard assembler with configuration.
        
        Args:
            config: Configuration dictionary
        """
        # Initialize attributes first before calling super().__init__
        config_dict = config or {}
        self._minimal_metadata = config_dict.get('minimal_metadata', False)
        self._include_basic_stats = config_dict.get('include_basic_stats', True)
        self._strip_large_sources = config_dict.get('strip_large_sources', True)
        
        super().__init__(config)
        
        # Override base settings for performance
        if self._minimal_metadata:
            self._include_metadata = False
            self._include_sources = True  # Keep sources but strip content
        
        logger.debug(f"Initialized StandardAssembler with minimal_metadata={self._minimal_metadata}")
    
    def _assemble_answer(
        self,
        query: str,
        answer_text: str, 
        context: ContextSelection,
        confidence: float,
        query_analysis: Optional[QueryAnalysis] = None,
        generation_metadata: Optional[Dict[str, Any]] = None
    ) -> Answer:
        """
        Assemble Answer object with minimal overhead.
        
        Args:
            query: Validated query string
            answer_text: Validated answer text
            context: Context selection
            confidence: Validated confidence score
            query_analysis: Optional query analysis
            generation_metadata: Optional generation metadata
            
        Returns:
            Answer object with minimal metadata
        """
        # Simple text formatting
        formatted_text = answer_text.strip()
        
        # Create sources list (potentially stripped)
        sources = self._create_minimal_sources_list(context)
        
        # Create minimal metadata
        metadata = self._create_minimal_metadata(query, context, generation_metadata)
        
        return Answer(
            text=formatted_text,
            sources=sources,
            confidence=confidence,
            metadata=metadata
        )
    
    def _create_minimal_sources_list(self, context: ContextSelection) -> List[Document]:
        """
        Create minimal sources list for performance.
        
        Args:
            context: Context selection with documents
            
        Returns:
            List of minimal source documents
        """
        if not self._include_sources or not context.selected_documents:
            return []
        
        sources = []
        for doc in context.selected_documents:
            if self._strip_large_sources:
                # Create minimal document with just essential information
                minimal_metadata = {
                    'original_length': len(doc.content),
                    'content_stripped': True
                }
                if doc.metadata:
                    minimal_metadata.update(doc.metadata)
                
                # Add source and chunk_id to metadata
                if hasattr(doc, 'source'):
                    minimal_metadata['source'] = doc.source
                elif 'source' not in minimal_metadata:
                    minimal_metadata['source'] = minimal_metadata.get('source', 'unknown')
                    
                if hasattr(doc, 'chunk_id'):
                    minimal_metadata['chunk_id'] = doc.chunk_id
                elif 'chunk_id' not in minimal_metadata:
                    minimal_metadata['chunk_id'] = minimal_metadata.get('chunk_id', 'unknown')
                
                minimal_doc = Document(
                    content="[Content stripped for performance]",  # Document content cannot be empty
                    metadata=minimal_metadata,
                    embedding=None  # Remove embedding
                )
                sources.append(minimal_doc)
            else:
                # Keep full content but remove embedding
                clean_metadata = doc.metadata.copy() if doc.metadata else {}
                
                # Add source and chunk_id to metadata
                if hasattr(doc, 'source'):
                    clean_metadata['source'] = doc.source
                elif 'source' not in clean_metadata:
                    clean_metadata['source'] = clean_metadata.get('source', 'unknown')
                    
                if hasattr(doc, 'chunk_id'):
                    clean_metadata['chunk_id'] = doc.chunk_id
                elif 'chunk_id' not in clean_metadata:
                    clean_metadata['chunk_id'] = clean_metadata.get('chunk_id', 'unknown')
                
                clean_doc = Document(
                    content=doc.content,
                    metadata=clean_metadata,
                    embedding=None
                )
                sources.append(clean_doc)
        
        return sources
    
    def _create_minimal_metadata(
        self,
        query: str,
        context: ContextSelection,
        generation_metadata: Optional[Dict[str, Any]] = None
    ) -> Dict[str, Any]:
        """
        Create minimal metadata for performance.
        
        Args:
            query: Original query
            context: Context selection
            generation_metadata: Optional generation metadata
            
        Returns:
            Minimal metadata dictionary
        """
        if self._minimal_metadata:
            # Absolute minimum metadata
            return {
                'assembler_type': 'standard',
                'source_count': len(context.selected_documents)
            }
        
        metadata = {
            'assembler_type': 'standard',
            'query': query,
            'retrieved_docs': len(context.selected_documents),
            'total_tokens': context.total_tokens,
            'selection_strategy': context.selection_strategy
        }
        
        # Add basic statistics if enabled
        if self._include_basic_stats:
            metadata.update({
                'query_length': len(query),
                'answer_length': 0,  # Will be updated after answer is created
                'source_count': len(context.selected_documents)
            })
        
        # Include minimal generation information
        if generation_metadata:
            # Only include essential generation metadata
            essential_fields = ['model', 'generation_time']
            for field in essential_fields:
                if field in generation_metadata:
                    metadata[field] = generation_metadata[field]
        
        return metadata
    
    def get_supported_formats(self) -> List[str]:
        """
        Return list of formats this standard assembler supports.
        
        Returns:
            List of format names
        """
        base_formats = super().get_supported_formats()
        standard_formats = [
            'minimal',
            'fast',
            'lightweight',
            'performance'
        ]
        return base_formats + standard_formats
    
    def configure(self, config: Dict[str, Any]) -> None:
        """
        Configure the standard assembler with provided settings.
        
        Args:
            config: Configuration dictionary
        """
        super().configure(config)
        
        # Update standard assembler specific configuration
        self._minimal_metadata = config.get('minimal_metadata', self._minimal_metadata)
        self._include_basic_stats = config.get('include_basic_stats', self._include_basic_stats)
        self._strip_large_sources = config.get('strip_large_sources', self._strip_large_sources)
        
        # Apply minimal metadata setting
        if self._minimal_metadata:
            self._include_metadata = False
            self._include_sources = True