Spaces:
Sleeping
Sleeping
File size: 11,770 Bytes
5e1a30c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
"""
Base interfaces and abstract classes for Query Processor components.
This module defines the core interfaces that all Query Processor sub-components
must implement, following the established architecture patterns from other components.
Key Design Principles:
- Abstract base classes define clear contracts
- Minimal required methods for flexibility
- Configuration-driven component selection
- Consistent error handling and metrics
- Type hints for better IDE support
"""
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Dict, Any, List, Optional, Union
from pathlib import Path
import sys
# Add project paths for imports
project_root = Path(__file__).parent.parent.parent.parent
sys.path.append(str(project_root))
from src.core.interfaces import Document, Answer, QueryOptions
@dataclass
class QueryAnalysis:
"""Results from query analysis containing query characteristics."""
query: str
complexity_score: float = 0.0
technical_terms: List[str] = field(default_factory=list)
entities: List[str] = field(default_factory=list)
intent_category: str = "general"
suggested_k: int = 5
confidence: float = 0.0
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class ContextSelection:
"""Results from context selection containing selected documents."""
selected_documents: List[Document]
total_tokens: int = 0
selection_strategy: str = "unknown"
diversity_score: float = 0.0
relevance_score: float = 0.0
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class QueryProcessorConfig:
"""Configuration for Query Processor and its sub-components."""
# Query Analyzer configuration
analyzer_type: str = "nlp"
analyzer_config: Dict[str, Any] = field(default_factory=dict)
# Context Selector configuration
selector_type: str = "mmr"
selector_config: Dict[str, Any] = field(default_factory=dict)
# Response Assembler configuration
assembler_type: str = "rich"
assembler_config: Dict[str, Any] = field(default_factory=dict)
# Workflow configuration
default_k: int = 5
max_tokens: int = 2048
enable_fallback: bool = True
timeout_seconds: float = 30.0
class QueryAnalyzer(ABC):
"""
Abstract base class for query analysis components.
Query analyzers examine user queries to extract characteristics that
can optimize the retrieval and generation process.
"""
@abstractmethod
def analyze(self, query: str) -> QueryAnalysis:
"""
Analyze a query and return its characteristics.
Args:
query: User query string
Returns:
QueryAnalysis with extracted characteristics
Raises:
ValueError: If query is empty or invalid
RuntimeError: If analysis fails
"""
pass
@abstractmethod
def get_supported_features(self) -> List[str]:
"""
Return list of analysis features this analyzer supports.
Returns:
List of feature names (e.g., ["entities", "complexity", "intent"])
"""
pass
def configure(self, config: Dict[str, Any]) -> None:
"""
Configure the analyzer with provided settings.
Args:
config: Configuration dictionary
"""
pass
class ContextSelector(ABC):
"""
Abstract base class for context selection components.
Context selectors choose optimal documents from retrieval results
to maximize answer quality within token constraints.
"""
@abstractmethod
def select(
self,
query: str,
documents: List[Document],
max_tokens: int,
query_analysis: Optional[QueryAnalysis] = None
) -> ContextSelection:
"""
Select optimal context documents for answer generation.
Args:
query: Original user query
documents: Retrieved documents to select from
max_tokens: Maximum token limit for selected context
query_analysis: Optional query analysis for optimization
Returns:
ContextSelection with selected documents and metadata
Raises:
ValueError: If parameters are invalid
RuntimeError: If selection fails
"""
pass
@abstractmethod
def estimate_tokens(self, text: str) -> int:
"""
Estimate token count for text (rough approximation).
Args:
text: Text to estimate tokens for
Returns:
Estimated token count
"""
pass
def configure(self, config: Dict[str, Any]) -> None:
"""
Configure the selector with provided settings.
Args:
config: Configuration dictionary
"""
pass
class ResponseAssembler(ABC):
"""
Abstract base class for response assembly components.
Response assemblers format the final Answer object with consistent
structure, citations, and metadata.
"""
@abstractmethod
def assemble(
self,
query: str,
answer_text: str,
context: ContextSelection,
confidence: float,
query_analysis: Optional[QueryAnalysis] = None,
generation_metadata: Optional[Dict[str, Any]] = None
) -> Answer:
"""
Assemble final Answer object with proper formatting.
Args:
query: Original user query
answer_text: Generated answer text
context: Selected context from ContextSelector
confidence: Answer confidence score
query_analysis: Optional query analysis metadata
generation_metadata: Optional metadata from answer generation
Returns:
Complete Answer object with sources and metadata
Raises:
ValueError: If required parameters are missing
RuntimeError: If assembly fails
"""
pass
@abstractmethod
def get_supported_formats(self) -> List[str]:
"""
Return list of output formats this assembler supports.
Returns:
List of format names (e.g., ["standard", "rich", "streaming"])
"""
pass
def configure(self, config: Dict[str, Any]) -> None:
"""
Configure the assembler with provided settings.
Args:
config: Configuration dictionary
"""
pass
class QueryProcessor(ABC):
"""
Abstract base class for the main Query Processor component.
The Query Processor orchestrates the complete query workflow:
analyze β retrieve β select β generate β assemble.
"""
@abstractmethod
def process(self, query: str, options: Optional[QueryOptions] = None) -> Answer:
"""
Process a query end-to-end and return a complete answer.
Args:
query: User query string
options: Optional query processing options
Returns:
Complete Answer object with text, sources, and metadata
Raises:
ValueError: If query is empty or options are invalid
RuntimeError: If processing pipeline fails
"""
pass
@abstractmethod
def analyze_query(self, query: str) -> QueryAnalysis:
"""
Analyze query characteristics without full processing.
Args:
query: User query string
Returns:
QueryAnalysis with extracted characteristics
"""
pass
@abstractmethod
def get_health_status(self) -> Dict[str, Any]:
"""
Get health status of query processor and sub-components.
Returns:
Dictionary with health information
"""
pass
def configure(self, config: QueryProcessorConfig) -> None:
"""
Configure the query processor and all sub-components.
Args:
config: Complete configuration object
"""
pass
# Configuration validation utilities
def validate_config(config: Dict[str, Any]) -> List[str]:
"""
Validate query processor configuration.
Args:
config: Configuration dictionary to validate
Returns:
List of validation error messages (empty if valid)
"""
errors = []
# Check required fields
required_fields = ['analyzer_type', 'selector_type', 'assembler_type']
for field in required_fields:
if field not in config:
errors.append(f"Missing required field: {field}")
# Validate known types
valid_analyzers = ['nlp', 'rule_based', 'llm']
if config.get('analyzer_type') not in valid_analyzers:
errors.append(f"Unknown analyzer_type. Valid options: {valid_analyzers}")
valid_selectors = ['mmr', 'diversity', 'token_limit']
if config.get('selector_type') not in valid_selectors:
errors.append(f"Unknown selector_type. Valid options: {valid_selectors}")
valid_assemblers = ['standard', 'rich', 'streaming']
if config.get('assembler_type') not in valid_assemblers:
errors.append(f"Unknown assembler_type. Valid options: {valid_assemblers}")
# Validate numeric ranges
if 'default_k' in config and (config['default_k'] < 1 or config['default_k'] > 50):
errors.append("default_k must be between 1 and 50")
if 'max_tokens' in config and (config['max_tokens'] < 100 or config['max_tokens'] > 8192):
errors.append("max_tokens must be between 100 and 8192")
return errors
# Performance tracking utilities
class QueryProcessorMetrics:
"""Utility class for tracking query processor performance metrics."""
def __init__(self):
self.total_queries = 0
self.successful_queries = 0
self.failed_queries = 0
self.average_latency = 0.0
self.phase_latencies = {
'analysis': 0.0,
'retrieval': 0.0,
'selection': 0.0,
'generation': 0.0,
'assembly': 0.0
}
def record_query(self, success: bool, latency: float, phase_times: Dict[str, float]):
"""Record metrics for a completed query."""
self.total_queries += 1
if success:
self.successful_queries += 1
else:
self.failed_queries += 1
# Update average latency
self.average_latency = (
(self.average_latency * (self.total_queries - 1) + latency) / self.total_queries
)
# Update phase latencies
for phase, time_taken in phase_times.items():
if phase in self.phase_latencies:
current_avg = self.phase_latencies[phase]
self.phase_latencies[phase] = (
(current_avg * (self.total_queries - 1) + time_taken) / self.total_queries
)
def get_stats(self) -> Dict[str, Any]:
"""Get current performance statistics."""
success_rate = self.successful_queries / self.total_queries if self.total_queries > 0 else 0.0
return {
'total_queries': self.total_queries,
'success_rate': success_rate,
'average_latency_ms': self.average_latency * 1000,
'phase_latencies_ms': {k: v * 1000 for k, v in self.phase_latencies.items()},
'failed_queries': self.failed_queries
} |