File size: 11,770 Bytes
5e1a30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"""
Base interfaces and abstract classes for Query Processor components.

This module defines the core interfaces that all Query Processor sub-components
must implement, following the established architecture patterns from other components.

Key Design Principles:
- Abstract base classes define clear contracts
- Minimal required methods for flexibility
- Configuration-driven component selection
- Consistent error handling and metrics
- Type hints for better IDE support
"""

from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Dict, Any, List, Optional, Union
from pathlib import Path
import sys

# Add project paths for imports
project_root = Path(__file__).parent.parent.parent.parent
sys.path.append(str(project_root))

from src.core.interfaces import Document, Answer, QueryOptions


@dataclass 
class QueryAnalysis:
    """Results from query analysis containing query characteristics."""
    
    query: str
    complexity_score: float = 0.0
    technical_terms: List[str] = field(default_factory=list)
    entities: List[str] = field(default_factory=list)
    intent_category: str = "general"
    suggested_k: int = 5
    confidence: float = 0.0
    metadata: Dict[str, Any] = field(default_factory=dict)


@dataclass
class ContextSelection:
    """Results from context selection containing selected documents."""
    
    selected_documents: List[Document]
    total_tokens: int = 0
    selection_strategy: str = "unknown"
    diversity_score: float = 0.0
    relevance_score: float = 0.0
    metadata: Dict[str, Any] = field(default_factory=dict)


@dataclass
class QueryProcessorConfig:
    """Configuration for Query Processor and its sub-components."""
    
    # Query Analyzer configuration
    analyzer_type: str = "nlp"
    analyzer_config: Dict[str, Any] = field(default_factory=dict)
    
    # Context Selector configuration  
    selector_type: str = "mmr"
    selector_config: Dict[str, Any] = field(default_factory=dict)
    
    # Response Assembler configuration
    assembler_type: str = "rich"
    assembler_config: Dict[str, Any] = field(default_factory=dict)
    
    # Workflow configuration
    default_k: int = 5
    max_tokens: int = 2048
    enable_fallback: bool = True
    timeout_seconds: float = 30.0


class QueryAnalyzer(ABC):
    """
    Abstract base class for query analysis components.
    
    Query analyzers examine user queries to extract characteristics that
    can optimize the retrieval and generation process.
    """
    
    @abstractmethod
    def analyze(self, query: str) -> QueryAnalysis:
        """
        Analyze a query and return its characteristics.
        
        Args:
            query: User query string
            
        Returns:
            QueryAnalysis with extracted characteristics
            
        Raises:
            ValueError: If query is empty or invalid
            RuntimeError: If analysis fails
        """
        pass
    
    @abstractmethod
    def get_supported_features(self) -> List[str]:
        """
        Return list of analysis features this analyzer supports.
        
        Returns:
            List of feature names (e.g., ["entities", "complexity", "intent"])
        """
        pass
    
    def configure(self, config: Dict[str, Any]) -> None:
        """
        Configure the analyzer with provided settings.
        
        Args:
            config: Configuration dictionary
        """
        pass


class ContextSelector(ABC):
    """
    Abstract base class for context selection components.
    
    Context selectors choose optimal documents from retrieval results
    to maximize answer quality within token constraints.
    """
    
    @abstractmethod
    def select(
        self, 
        query: str,
        documents: List[Document], 
        max_tokens: int,
        query_analysis: Optional[QueryAnalysis] = None
    ) -> ContextSelection:
        """
        Select optimal context documents for answer generation.
        
        Args:
            query: Original user query
            documents: Retrieved documents to select from
            max_tokens: Maximum token limit for selected context
            query_analysis: Optional query analysis for optimization
            
        Returns:
            ContextSelection with selected documents and metadata
            
        Raises:
            ValueError: If parameters are invalid
            RuntimeError: If selection fails
        """
        pass
    
    @abstractmethod
    def estimate_tokens(self, text: str) -> int:
        """
        Estimate token count for text (rough approximation).
        
        Args:
            text: Text to estimate tokens for
            
        Returns:
            Estimated token count
        """
        pass
    
    def configure(self, config: Dict[str, Any]) -> None:
        """
        Configure the selector with provided settings.
        
        Args:
            config: Configuration dictionary
        """
        pass


class ResponseAssembler(ABC):
    """
    Abstract base class for response assembly components.
    
    Response assemblers format the final Answer object with consistent
    structure, citations, and metadata.
    """
    
    @abstractmethod
    def assemble(
        self,
        query: str,
        answer_text: str, 
        context: ContextSelection,
        confidence: float,
        query_analysis: Optional[QueryAnalysis] = None,
        generation_metadata: Optional[Dict[str, Any]] = None
    ) -> Answer:
        """
        Assemble final Answer object with proper formatting.
        
        Args:
            query: Original user query
            answer_text: Generated answer text
            context: Selected context from ContextSelector
            confidence: Answer confidence score
            query_analysis: Optional query analysis metadata
            generation_metadata: Optional metadata from answer generation
            
        Returns:
            Complete Answer object with sources and metadata
            
        Raises:
            ValueError: If required parameters are missing
            RuntimeError: If assembly fails
        """
        pass
    
    @abstractmethod
    def get_supported_formats(self) -> List[str]:
        """
        Return list of output formats this assembler supports.
        
        Returns:
            List of format names (e.g., ["standard", "rich", "streaming"])
        """
        pass
    
    def configure(self, config: Dict[str, Any]) -> None:
        """
        Configure the assembler with provided settings.
        
        Args:
            config: Configuration dictionary
        """
        pass


class QueryProcessor(ABC):
    """
    Abstract base class for the main Query Processor component.
    
    The Query Processor orchestrates the complete query workflow:
    analyze β†’ retrieve β†’ select β†’ generate β†’ assemble.
    """
    
    @abstractmethod
    def process(self, query: str, options: Optional[QueryOptions] = None) -> Answer:
        """
        Process a query end-to-end and return a complete answer.
        
        Args:
            query: User query string
            options: Optional query processing options
            
        Returns:
            Complete Answer object with text, sources, and metadata
            
        Raises:
            ValueError: If query is empty or options are invalid
            RuntimeError: If processing pipeline fails
        """
        pass
    
    @abstractmethod
    def analyze_query(self, query: str) -> QueryAnalysis:
        """
        Analyze query characteristics without full processing.
        
        Args:
            query: User query string
            
        Returns:
            QueryAnalysis with extracted characteristics
        """
        pass
    
    @abstractmethod
    def get_health_status(self) -> Dict[str, Any]:
        """
        Get health status of query processor and sub-components.
        
        Returns:
            Dictionary with health information
        """
        pass
    
    def configure(self, config: QueryProcessorConfig) -> None:
        """
        Configure the query processor and all sub-components.
        
        Args:
            config: Complete configuration object
        """
        pass


# Configuration validation utilities
def validate_config(config: Dict[str, Any]) -> List[str]:
    """
    Validate query processor configuration.
    
    Args:
        config: Configuration dictionary to validate
        
    Returns:
        List of validation error messages (empty if valid)
    """
    errors = []
    
    # Check required fields
    required_fields = ['analyzer_type', 'selector_type', 'assembler_type']
    for field in required_fields:
        if field not in config:
            errors.append(f"Missing required field: {field}")
    
    # Validate known types
    valid_analyzers = ['nlp', 'rule_based', 'llm']
    if config.get('analyzer_type') not in valid_analyzers:
        errors.append(f"Unknown analyzer_type. Valid options: {valid_analyzers}")
    
    valid_selectors = ['mmr', 'diversity', 'token_limit']
    if config.get('selector_type') not in valid_selectors:
        errors.append(f"Unknown selector_type. Valid options: {valid_selectors}")
    
    valid_assemblers = ['standard', 'rich', 'streaming']
    if config.get('assembler_type') not in valid_assemblers:
        errors.append(f"Unknown assembler_type. Valid options: {valid_assemblers}")
    
    # Validate numeric ranges
    if 'default_k' in config and (config['default_k'] < 1 or config['default_k'] > 50):
        errors.append("default_k must be between 1 and 50")
    
    if 'max_tokens' in config and (config['max_tokens'] < 100 or config['max_tokens'] > 8192):
        errors.append("max_tokens must be between 100 and 8192")
    
    return errors


# Performance tracking utilities
class QueryProcessorMetrics:
    """Utility class for tracking query processor performance metrics."""
    
    def __init__(self):
        self.total_queries = 0
        self.successful_queries = 0
        self.failed_queries = 0
        self.average_latency = 0.0
        self.phase_latencies = {
            'analysis': 0.0,
            'retrieval': 0.0, 
            'selection': 0.0,
            'generation': 0.0,
            'assembly': 0.0
        }
    
    def record_query(self, success: bool, latency: float, phase_times: Dict[str, float]):
        """Record metrics for a completed query."""
        self.total_queries += 1
        if success:
            self.successful_queries += 1
        else:
            self.failed_queries += 1
        
        # Update average latency
        self.average_latency = (
            (self.average_latency * (self.total_queries - 1) + latency) / self.total_queries
        )
        
        # Update phase latencies
        for phase, time_taken in phase_times.items():
            if phase in self.phase_latencies:
                current_avg = self.phase_latencies[phase]
                self.phase_latencies[phase] = (
                    (current_avg * (self.total_queries - 1) + time_taken) / self.total_queries
                )
    
    def get_stats(self) -> Dict[str, Any]:
        """Get current performance statistics."""
        success_rate = self.successful_queries / self.total_queries if self.total_queries > 0 else 0.0
        
        return {
            'total_queries': self.total_queries,
            'success_rate': success_rate,
            'average_latency_ms': self.average_latency * 1000,
            'phase_latencies_ms': {k: v * 1000 for k, v in self.phase_latencies.items()},
            'failed_queries': self.failed_queries
        }