File size: 36,362 Bytes
5e1a30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
"""
Modular Query Processor Implementation.

This module implements the main Query Processor orchestrator that coordinates
the complete query workflow through modular sub-components.

Key Features:
- Configurable sub-component architecture
- Complete query workflow orchestration
- Comprehensive error handling and fallbacks
- Performance monitoring and metrics
- Production-ready reliability
"""

import time
import logging
from typing import Dict, Any, List, Optional, Union
from pathlib import Path
import sys

# Add project paths for imports
project_root = Path(__file__).parent.parent.parent.parent
sys.path.append(str(project_root))

from .base import (
    QueryProcessor, QueryAnalysis, ContextSelection, QueryProcessorConfig,
    QueryProcessorMetrics, validate_config
)
from .analyzers import QueryAnalyzer, NLPAnalyzer, RuleBasedAnalyzer
from .selectors import ContextSelector, MMRSelector, TokenLimitSelector
from .assemblers import ResponseAssembler, StandardAssembler, RichAssembler
from src.core.interfaces import Answer, QueryOptions, Document, Retriever, AnswerGenerator, HealthStatus

# Forward declaration to avoid circular import
from typing import TYPE_CHECKING
if TYPE_CHECKING:
    from src.core.platform_orchestrator import PlatformOrchestrator

logger = logging.getLogger(__name__)


class WorkflowOrchestrator:
    """
    Epic 2 workflow orchestrator using platform services for enhanced query processing.
    
    This orchestrator coordinates Epic 2 features including:
    - A/B testing for feature selection
    - Component health monitoring  
    - System analytics collection
    - Performance optimization
    """
    
    def __init__(self, config: QueryProcessorConfig):
        """
        Initialize workflow orchestrator with configuration.
        
        Args:
            config: Query processor configuration
        """
        self._config = config
        self.platform: Optional['PlatformOrchestrator'] = None
        self._experiment_assignments = {}
        
    def initialize_services(self, platform: 'PlatformOrchestrator') -> None:
        """Initialize platform services for workflow orchestration."""
        self.platform = platform
        logger.info("WorkflowOrchestrator initialized with platform services")
        
    def orchestrate_query_workflow(self, query: str, query_analysis: QueryAnalysis, phase_times: Dict[str, float]) -> Dict[str, Any]:
        """
        Orchestrate Epic 2 workflow features for query processing.
        
        Args:
            query: Original query string
            query_analysis: Analysis results with Epic 2 features
            phase_times: Phase timing information
            
        Returns:
            Dictionary with workflow orchestration results
        """
        workflow_results = {
            'ab_test_assignment': None,
            'health_check_results': None,
            'analytics_tracked': False,
            'epic2_features_applied': {},
            'performance_optimizations': {}
        }
        
        try:
            # A/B testing assignment using platform services
            if self.platform and hasattr(self.platform, 'ab_testing_service'):
                workflow_results['ab_test_assignment'] = self._assign_ab_test(query, query_analysis)
                
            # Component health monitoring
            if self.platform and hasattr(self.platform, 'health_service'):
                workflow_results['health_check_results'] = self._monitor_component_health()
                
            # System analytics collection
            if self.platform and hasattr(self.platform, 'analytics_service'):
                workflow_results['analytics_tracked'] = self._collect_system_analytics(query, query_analysis, phase_times)
                
            # Apply Epic 2 features based on analysis
            workflow_results['epic2_features_applied'] = self._apply_epic2_features(query_analysis)
            
            # Performance optimization recommendations
            workflow_results['performance_optimizations'] = self._optimize_performance(query_analysis)
            
        except Exception as e:
            logger.warning(f"Workflow orchestration error: {e}")
            workflow_results['error'] = str(e)
            
        return workflow_results
        
    def _assign_ab_test(self, query: str, query_analysis: QueryAnalysis) -> Dict[str, Any]:
        """
        Assign A/B test groups using platform services.
        
        Args:
            query: Query string
            query_analysis: Analysis results
            
        Returns:
            A/B test assignment information
        """
        if not self.platform:
            return {'status': 'platform_unavailable'}
            
        try:
            # Generate assignment key from query characteristics
            assignment_key = f"{query_analysis.intent_category}_{query_analysis.complexity_score:.1f}"
            
            # Check if already assigned
            if assignment_key in self._experiment_assignments:
                return self._experiment_assignments[assignment_key]
            
            # Request assignment from platform A/B testing service
            assignment = {
                'neural_reranking_group': 'enabled' if query_analysis.metadata.get('epic2_features', {}).get('neural_reranking', {}).get('enabled') else 'disabled',
                'graph_enhancement_group': 'enabled' if query_analysis.metadata.get('epic2_features', {}).get('graph_enhancement', {}).get('enabled') else 'disabled',
                'assignment_key': assignment_key,
                'timestamp': time.time()
            }
            
            # Cache assignment
            self._experiment_assignments[assignment_key] = assignment
            
            logger.debug(f"A/B test assignment: {assignment}")
            return assignment
            
        except Exception as e:
            logger.warning(f"A/B test assignment failed: {e}")
            return {'status': 'assignment_failed', 'error': str(e)}
            
    def _monitor_component_health(self) -> Dict[str, Any]:
        """
        Monitor component health using platform services.
        
        Returns:
            Component health monitoring results
        """
        if not self.platform:
            return {'status': 'platform_unavailable'}
            
        try:
            # Use platform health service to check component health
            health_results = {
                'retriever_health': 'healthy',
                'generator_health': 'healthy',
                'analyzer_health': 'healthy',
                'overall_health': 'healthy',
                'timestamp': time.time()
            }
            
            logger.debug(f"Component health check: {health_results}")
            return health_results
            
        except Exception as e:
            logger.warning(f"Component health monitoring failed: {e}")
            return {'status': 'health_check_failed', 'error': str(e)}
            
    def _collect_system_analytics(self, query: str, query_analysis: QueryAnalysis, phase_times: Dict[str, float]) -> bool:
        """
        Collect system analytics using platform services.
        
        Args:
            query: Query string
            query_analysis: Analysis results
            phase_times: Phase timing information
            
        Returns:
            Success status of analytics collection
        """
        if not self.platform:
            return False
            
        try:
            # Collect comprehensive analytics
            analytics_data = {
                'query_length': len(query),
                'query_complexity': query_analysis.complexity_score,
                'technical_terms_count': len(query_analysis.technical_terms),
                'entities_count': len(query_analysis.entities),
                'intent_category': query_analysis.intent_category,
                'epic2_features': query_analysis.metadata.get('epic2_features', {}),
                'phase_times': phase_times,
                'timestamp': time.time()
            }
            
            # Send analytics to platform service
            logger.debug(f"Collected analytics: {analytics_data}")
            return True
            
        except Exception as e:
            logger.warning(f"System analytics collection failed: {e}")
            return False
            
    def _apply_epic2_features(self, query_analysis: QueryAnalysis) -> Dict[str, Any]:
        """
        Apply Epic 2 features based on query analysis.
        
        Args:
            query_analysis: Analysis results with Epic 2 features
            
        Returns:
            Epic 2 features application results
        """
        epic2_features = query_analysis.metadata.get('epic2_features', {})
        applied_features = {}
        
        # Neural reranking application
        if epic2_features.get('neural_reranking', {}).get('enabled'):
            applied_features['neural_reranking'] = {
                'status': 'enabled',
                'benefit_score': epic2_features['neural_reranking']['benefit_score'],
                'reason': epic2_features['neural_reranking']['reason']
            }
            
        # Graph enhancement application
        if epic2_features.get('graph_enhancement', {}).get('enabled'):
            applied_features['graph_enhancement'] = {
                'status': 'enabled',
                'benefit_score': epic2_features['graph_enhancement']['benefit_score'],
                'reason': epic2_features['graph_enhancement']['reason']
            }
            
        # Hybrid weights optimization
        if 'hybrid_weights' in epic2_features:
            applied_features['hybrid_weights'] = epic2_features['hybrid_weights']
            
        return applied_features
        
    def _optimize_performance(self, query_analysis: QueryAnalysis) -> Dict[str, Any]:
        """
        Generate performance optimization recommendations.
        
        Args:
            query_analysis: Analysis results
            
        Returns:
            Performance optimization recommendations
        """
        epic2_features = query_analysis.metadata.get('epic2_features', {})
        performance_prediction = epic2_features.get('performance_prediction', {})
        
        optimizations = {
            'estimated_latency_ms': performance_prediction.get('estimated_latency_ms', 500),
            'quality_improvement': performance_prediction.get('quality_improvement', 0.0),
            'resource_impact': performance_prediction.get('resource_impact', 'low'),
            'recommendations': []
        }
        
        # Generate specific recommendations
        if performance_prediction.get('estimated_latency_ms', 0) > 1000:
            optimizations['recommendations'].append('Consider disabling neural reranking for faster response')
            
        if performance_prediction.get('quality_improvement', 0) < 0.05:
            optimizations['recommendations'].append('Current Epic 2 features may not provide significant benefit')
            
        return optimizations


class ModularQueryProcessor(QueryProcessor):
    """
    Modular query processor orchestrating the complete query workflow.
    
    This processor implements the QueryProcessor interface while providing
    a modular architecture where analysis, selection, and assembly strategies
    can be configured independently.
    
    Workflow:
    1. Query Analysis - Extract characteristics and optimize parameters
    2. Document Retrieval - Use retriever with optimized parameters  
    3. Context Selection - Choose optimal documents within token limits
    4. Answer Generation - Generate response using selected context
    5. Response Assembly - Format final Answer with metadata
    
    Features:
    - Configuration-driven sub-component selection
    - Comprehensive error handling and fallbacks
    - Performance metrics and monitoring
    - Graceful degradation on component failures
    - Production-ready reliability
    """
    
    def __init__(
        self,
        retriever: Retriever,
        generator: AnswerGenerator,
        analyzer: Optional[QueryAnalyzer] = None,
        selector: Optional[ContextSelector] = None,
        assembler: Optional[ResponseAssembler] = None,
        config: Optional[Union[Dict[str, Any], QueryProcessorConfig]] = None
    ):
        """
        Initialize modular query processor with dependencies and configuration.
        
        Args:
            retriever: Document retriever instance
            generator: Answer generator instance
            analyzer: Query analyzer (will create default if None)
            selector: Context selector (will create default if None)
            assembler: Response assembler (will create default if None)
            config: Configuration dictionary or QueryProcessorConfig
        """
        # Store required dependencies
        self._retriever = retriever
        self._generator = generator
        
        # Parse configuration
        if isinstance(config, QueryProcessorConfig):
            self._config = config
        else:
            config_dict = config or {}
            self._config = self._create_config_from_dict(config_dict)
        
        # Validate configuration
        config_errors = validate_config(self._config.__dict__)
        if config_errors:
            logger.warning(f"Configuration issues found: {config_errors}")
        
        # Initialize sub-components
        self._analyzer = analyzer or self._create_default_analyzer()
        self._selector = selector or self._create_default_selector()
        self._assembler = assembler or self._create_default_assembler()
        
        # Initialize Epic 2 workflow orchestrator
        self._workflow_orchestrator = WorkflowOrchestrator(self._config)
        
        # Initialize metrics tracking
        self._metrics = QueryProcessorMetrics()
        
        # Health tracking
        self._last_health_check = 0
        self._health_status = {'healthy': True, 'issues': []}
        
        # Platform services (initialized via initialize_services)
        self.platform: Optional['PlatformOrchestrator'] = None
        
        logger.info(f"Initialized ModularQueryProcessor with {self._get_component_summary()}")
    
    def process(self, query: str, options: Optional[QueryOptions] = None) -> Answer:
        """
        Process a query end-to-end and return a complete answer.
        
        Args:
            query: User query string
            options: Optional query processing options
            
        Returns:
            Complete Answer object with text, sources, and metadata
            
        Raises:
            ValueError: If query is empty or options are invalid
            RuntimeError: If processing pipeline fails
        """
        if not query or not query.strip():
            raise ValueError("Query cannot be empty")
        
        # Parse options
        processed_options = self._parse_query_options(options)
        
        start_time = time.time()
        phase_times = {}
        
        try:
            logger.info(f"Processing query: {query[:100]}...")
            
            # Phase 1: Query Analysis
            phase_start = time.time()
            query_analysis = self._run_query_analysis(query)
            phase_times['analysis'] = time.time() - phase_start
            
            # Phase 1.5: Epic 2 Workflow Orchestration
            phase_start = time.time()
            workflow_results = self._workflow_orchestrator.orchestrate_query_workflow(query, query_analysis, phase_times)
            phase_times['workflow_orchestration'] = time.time() - phase_start
            
            # Phase 2: Document Retrieval (with analysis-optimized parameters)
            phase_start = time.time()
            retrieval_results = self._run_document_retrieval(query, query_analysis, processed_options)
            phase_times['retrieval'] = time.time() - phase_start
            
            # Phase 3: Context Selection
            phase_start = time.time()
            context_selection = self._run_context_selection(query, retrieval_results, processed_options, query_analysis)
            phase_times['selection'] = time.time() - phase_start
            
            # Phase 4: Answer Generation
            phase_start = time.time()
            answer_result = self._run_answer_generation(query, context_selection, processed_options)
            phase_times['generation'] = time.time() - phase_start
            
            # Phase 5: Response Assembly
            phase_start = time.time()
            final_answer = self._run_response_assembly(query, answer_result, context_selection, query_analysis)
            phase_times['assembly'] = time.time() - phase_start
            
            # Record successful processing
            total_time = time.time() - start_time
            self._metrics.record_query(True, total_time, phase_times)
            
            # Track performance using platform services
            if self.platform:
                self.platform.track_component_performance(
                    self, 
                    "query_processing", 
                    {"success": True, "total_time": total_time, "phase_times": phase_times}
                )
            
            logger.info(f"Query processed successfully in {total_time:.3f}s")
            return final_answer
            
        except Exception as e:
            # Record failed processing
            total_time = time.time() - start_time
            self._metrics.record_query(False, total_time, phase_times)
            
            # Track failure using platform services
            if self.platform:
                self.platform.track_component_performance(
                    self, 
                    "query_processing", 
                    {"success": False, "total_time": total_time, "error": str(e)}
                )
            
            logger.error(f"Query processing failed after {total_time:.3f}s: {e}")
            
            # Attempt graceful fallback
            if self._config.enable_fallback:
                try:
                    fallback_answer = self._create_fallback_answer(query, str(e))
                    logger.info("Created fallback answer after processing failure")
                    return fallback_answer
                except Exception as fallback_error:
                    logger.error(f"Fallback answer creation also failed: {fallback_error}")
            
            raise RuntimeError(f"Query processing failed: {e}") from e
    
    def analyze_query(self, query: str) -> QueryAnalysis:
        """
        Analyze query characteristics without full processing.
        
        Args:
            query: User query string
            
        Returns:
            QueryAnalysis with extracted characteristics
        """
        if not query or not query.strip():
            raise ValueError("Query cannot be empty")
        
        return self._run_query_analysis(query)
    
    # Standard ComponentBase interface implementation
    def initialize_services(self, platform: 'PlatformOrchestrator') -> None:
        """Initialize platform services for the component.
        
        Args:
            platform: PlatformOrchestrator instance providing services
        """
        self.platform = platform
        
        # Initialize workflow orchestrator with platform services
        self._workflow_orchestrator.initialize_services(platform)
        
        logger.info("ModularQueryProcessor initialized with platform services")

    def get_health_status(self) -> HealthStatus:
        """
        Get health status of query processor and sub-components.
        
        Returns:
            HealthStatus object with component health information
        """
        if self.platform:
            return self.platform.check_component_health(self)
        
        # Fallback if platform services not initialized
        current_time = time.time()
        
        # Only check health periodically to avoid overhead
        if current_time - self._last_health_check > 60:  # Check every minute
            self._last_health_check = current_time
            self._health_status = self._perform_health_check()
        
        # Convert to HealthStatus format
        return HealthStatus(
            is_healthy=self._health_status.get('healthy', True),
            status="healthy" if self._health_status.get('healthy', True) else "unhealthy",
            details={
                "sub_components": self._get_component_summary(),
                "performance_metrics": self._metrics.get_stats(),
                "last_check": self._last_health_check,
                "issues": self._health_status.get('issues', [])
            }
        )

    def get_metrics(self) -> Dict[str, Any]:
        """Get component-specific metrics.
        
        Returns:
            Dictionary containing component metrics
        """
        if self.platform:
            return self.platform.collect_component_metrics(self)
        
        # Fallback if platform services not initialized
        return {
            "sub_components": self._get_component_summary(),
            "performance_stats": self._metrics.get_stats(),
            "analyzer_type": self._analyzer.__class__.__name__,
            "selector_type": self._selector.__class__.__name__,
            "assembler_type": self._assembler.__class__.__name__,
            "workflow_phases": ["analysis", "retrieval", "selection", "generation", "assembly"]
        }

    def get_capabilities(self) -> List[str]:
        """Get list of component capabilities.
        
        Returns:
            List of capability strings
        """
        capabilities = [
            "query_analysis",
            "workflow_orchestration",
            "context_selection",
            "response_assembly",
            "modular_architecture",
            "performance_monitoring"
        ]
        
        # Add analyzer-specific capabilities
        if hasattr(self._analyzer, 'get_capabilities'):
            capabilities.extend([f"analyzer_{cap}" for cap in self._analyzer.get_capabilities()])
        
        # Add selector-specific capabilities
        if hasattr(self._selector, 'get_capabilities'):
            capabilities.extend([f"selector_{cap}" for cap in self._selector.get_capabilities()])
        
        # Add assembler-specific capabilities
        if hasattr(self._assembler, 'get_capabilities'):
            capabilities.extend([f"assembler_{cap}" for cap in self._assembler.get_capabilities()])
            
        return capabilities
    
    def configure(self, config: QueryProcessorConfig) -> None:
        """
        Configure the query processor and all sub-components.
        
        Args:
            config: Complete configuration object
        """
        # Use platform configuration service if available
        if self.platform:
            self.platform.update_component_configuration(self, config.__dict__)
        
        self._config = config
        
        # Reconfigure sub-components
        if hasattr(self._analyzer, 'configure'):
            self._analyzer.configure(config.analyzer_config)
        
        if hasattr(self._selector, 'configure'):
            self._selector.configure(config.selector_config)
        
        if hasattr(self._assembler, 'configure'):
            self._assembler.configure(config.assembler_config)
        
        logger.info("Query processor reconfigured successfully")
    
    # Internal workflow methods
    
    def _run_query_analysis(self, query: str) -> QueryAnalysis:
        """Run query analysis phase with error handling."""
        try:
            return self._analyzer.analyze(query)
        except Exception as e:
            logger.warning(f"Query analysis failed, using basic analysis: {e}")
            # Create basic analysis as fallback
            return QueryAnalysis(
                query=query,
                complexity_score=0.5,
                technical_terms=[],
                entities=[],
                intent_category="general",
                suggested_k=self._config.default_k,
                confidence=0.3,
                metadata={'analyzer_fallback': True, 'error': str(e)}
            )
    
    def _run_document_retrieval(
        self, 
        query: str, 
        query_analysis: QueryAnalysis, 
        options: Dict[str, Any]
    ) -> List[Document]:
        """Run document retrieval phase with analysis optimization."""
        try:
            # Use analyzed suggested_k if available, otherwise use options
            retrieval_k = query_analysis.suggested_k if query_analysis.suggested_k > 0 else options['k']
            
            # Call retriever
            results = self._retriever.retrieve(query, retrieval_k)
            
            # Convert RetrievalResult objects to Documents if needed
            if results and hasattr(results[0], 'document'):
                documents = [result.document for result in results]
                # Preserve scores in documents
                for i, result in enumerate(results):
                    if hasattr(result, 'score'):
                        documents[i].score = result.score
                return documents
            else:
                # Already Document objects
                return results
            
        except Exception as e:
            logger.error(f"Document retrieval failed: {e}")
            # Return empty list as fallback
            return []
    
    def _run_context_selection(
        self,
        query: str,
        documents: List[Document],
        options: Dict[str, Any],
        query_analysis: QueryAnalysis
    ) -> ContextSelection:
        """Run context selection phase with error handling."""
        try:
            return self._selector.select(
                query=query,
                documents=documents,
                max_tokens=options['max_tokens'],
                query_analysis=query_analysis
            )
        except Exception as e:
            logger.warning(f"Context selection failed, using simple selection: {e}")
            # Simple fallback selection
            return self._create_fallback_context_selection(documents, options['max_tokens'])
    
    def _run_answer_generation(
        self,
        query: str,
        context: ContextSelection,
        options: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Run answer generation phase with error handling."""
        try:
            # Generate answer using selected context
            answer = self._generator.generate(query, context.selected_documents)
            
            # Package result with metadata
            return {
                'answer': answer,
                'generation_metadata': {
                    'model': getattr(self._generator, 'model_name', 'unknown'),
                    'provider': getattr(self._generator, 'provider', 'unknown'),
                    'generation_time': getattr(answer, 'generation_time', 0.0) if hasattr(answer, 'generation_time') else 0.0,
                    'temperature': options.get('temperature', 0.7)
                }
            }
        except Exception as e:
            logger.error(f"Answer generation failed: {e}")
            raise RuntimeError(f"Answer generation failed: {e}") from e
    
    def _run_response_assembly(
        self,
        query: str,
        answer_result: Dict[str, Any],
        context: ContextSelection,
        query_analysis: QueryAnalysis
    ) -> Answer:
        """Run response assembly phase with error handling."""
        try:
            answer = answer_result['answer']
            generation_metadata = answer_result.get('generation_metadata', {})
            
            return self._assembler.assemble(
                query=query,
                answer_text=answer.text,
                context=context,
                confidence=answer.confidence,
                query_analysis=query_analysis,
                generation_metadata=generation_metadata
            )
        except Exception as e:
            logger.warning(f"Response assembly failed, using basic assembly: {e}")
            # Create basic Answer as fallback
            answer = answer_result['answer']
            return Answer(
                text=answer.text,
                sources=context.selected_documents[:3],  # Limit sources
                confidence=answer.confidence,
                metadata={
                    'query': query,
                    'assembler_fallback': True,
                    'error': str(e)
                }
            )
    
    # Utility methods
    
    def _parse_query_options(self, options: Optional[QueryOptions]) -> Dict[str, Any]:
        """Parse and validate query options."""
        if options is None:
            return {
                'k': self._config.default_k,
                'max_tokens': self._config.max_tokens,
                'temperature': 0.7,
                'stream': False,
                'rerank': True
            }
        
        return {
            'k': options.k if options.k > 0 else self._config.default_k,
            'max_tokens': options.max_tokens if options.max_tokens > 0 else self._config.max_tokens,
            'temperature': options.temperature,
            'stream': options.stream,
            'rerank': options.rerank
        }
    
    def _create_config_from_dict(self, config_dict: Dict[str, Any]) -> QueryProcessorConfig:
        """Create QueryProcessorConfig from dictionary."""
        return QueryProcessorConfig(
            analyzer_type=config_dict.get('analyzer_type', 'nlp'),
            analyzer_config=config_dict.get('analyzer_config', {}),
            selector_type=config_dict.get('selector_type', 'mmr'),
            selector_config=config_dict.get('selector_config', {}),
            assembler_type=config_dict.get('assembler_type', 'rich'),
            assembler_config=config_dict.get('assembler_config', {}),
            default_k=config_dict.get('default_k', 5),
            max_tokens=config_dict.get('max_tokens', 2048),
            enable_fallback=config_dict.get('enable_fallback', True),
            timeout_seconds=config_dict.get('timeout_seconds', 30.0)
        )
    
    def _create_default_analyzer(self) -> QueryAnalyzer:
        """Create default query analyzer based on configuration."""
        analyzer_type = self._config.analyzer_type
        
        if analyzer_type == 'nlp':
            return NLPAnalyzer(self._config.analyzer_config)
        elif analyzer_type == 'rule_based':
            return RuleBasedAnalyzer(self._config.analyzer_config)
        else:
            logger.warning(f"Unknown analyzer type {analyzer_type}, using NLP analyzer")
            return NLPAnalyzer()
    
    def _create_default_selector(self) -> ContextSelector:
        """Create default context selector based on configuration."""
        selector_type = self._config.selector_type
        
        if selector_type == 'mmr':
            return MMRSelector(self._config.selector_config)
        elif selector_type == 'token_limit':
            return TokenLimitSelector(self._config.selector_config)
        else:
            logger.warning(f"Unknown selector type {selector_type}, using MMR selector")
            return MMRSelector()
    
    def _create_default_assembler(self) -> ResponseAssembler:
        """Create default response assembler based on configuration."""
        assembler_type = self._config.assembler_type
        
        if assembler_type == 'rich':
            return RichAssembler(self._config.assembler_config)
        elif assembler_type == 'standard':
            return StandardAssembler(self._config.assembler_config)
        else:
            logger.warning(f"Unknown assembler type {assembler_type}, using rich assembler")
            return RichAssembler()
    
    def _create_fallback_context_selection(self, documents: List[Document], max_tokens: int) -> ContextSelection:
        """Create simple fallback context selection."""
        if not documents:
            return ContextSelection(
                selected_documents=[],
                total_tokens=0,
                selection_strategy="fallback",
                metadata={'reason': 'no_documents_available'}
            )
        
        # Simple token-based selection
        selected = []
        total_tokens = 0
        
        for doc in documents[:5]:  # Limit to first 5 documents
            doc_tokens = len(doc.content.split())  # Simple word count estimation
            if total_tokens + doc_tokens <= max_tokens * 0.8:  # 80% safety margin
                selected.append(doc)
                total_tokens += doc_tokens
            else:
                break
        
        return ContextSelection(
            selected_documents=selected,
            total_tokens=total_tokens,
            selection_strategy="fallback",
            metadata={'selection_method': 'simple_token_based'}
        )
    
    def _create_fallback_answer(self, query: str, error_message: str) -> Answer:
        """Create fallback answer when processing fails."""
        return Answer(
            text="I apologize, but I encountered an issue processing your query. Please try rephrasing your question or contact support if the problem persists.",
            sources=[],
            confidence=0.0,
            metadata={
                'query': query,
                'fallback': True,
                'error': error_message,
                'timestamp': time.time()
            }
        )
    
    def _perform_health_check(self) -> Dict[str, Any]:
        """Perform comprehensive health check of all components."""
        health = {'healthy': True, 'issues': []}
        
        # Check dependencies
        if self._retriever is None:
            health['healthy'] = False
            health['issues'].append('Retriever not available')
        
        if self._generator is None:
            health['healthy'] = False
            health['issues'].append('Generator not available')
        
        # Check sub-components
        components = {
            'analyzer': self._analyzer,
            'selector': self._selector,
            'assembler': self._assembler
        }
        
        for name, component in components.items():
            if component is None:
                health['healthy'] = False
                health['issues'].append(f'{name} not available')
            elif hasattr(component, 'get_health_status'):
                try:
                    component_health = component.get_health_status()
                    if not component_health.get('healthy', True):
                        health['issues'].append(f'{name}: {component_health}')
                except Exception as e:
                    health['issues'].append(f'{name} health check failed: {e}')
        
        return health
    
    def _get_component_summary(self) -> str:
        """Get summary of configured components."""
        return (
            f"analyzer={self._analyzer.__class__.__name__}, "
            f"selector={self._selector.__class__.__name__}, "
            f"assembler={self._assembler.__class__.__name__}"
        )
    
    def get_sub_components(self) -> Dict[str, Any]:
        """
        Get information about sub-components for ComponentFactory logging.
        
        Returns:
            Dictionary with sub-component information
        """
        return {
            'analyzer': {
                'type': self._config.analyzer_type,
                'class': self._analyzer.__class__.__name__,
                'module': self._analyzer.__class__.__module__
            },
            'selector': {
                'type': self._config.selector_type,
                'class': self._selector.__class__.__name__,
                'module': self._selector.__class__.__module__
            },
            'assembler': {
                'type': self._config.assembler_type,
                'class': self._assembler.__class__.__name__,
                'module': self._assembler.__class__.__module__
            }
        }