Spaces:
Running
Running
File size: 8,611 Bytes
5e1a30c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
"""
Dashboard Overview Layout.
This module provides the overview layout for the analytics dashboard,
showing high-level system metrics and status.
"""
from typing import Dict, Any
from dash import html, dcc
import plotly.graph_objs as go
import plotly.express as px
def create_overview_layout(dashboard_data: Dict[str, Any]) -> html.Div:
"""
Create overview dashboard layout.
Args:
dashboard_data: Real-time dashboard data
Returns:
Overview layout component
"""
overview = dashboard_data.get("overview", {})
performance = dashboard_data.get("performance", {})
quality = dashboard_data.get("quality", {})
time_series = dashboard_data.get("time_series", {})
# Key metrics cards
metrics_cards = [
_create_metric_card(
"Total Queries",
overview.get("total_queries", 0),
"π",
"total-queries-card"
),
_create_metric_card(
"Queries/Min",
f"{overview.get('queries_per_minute', 0):.1f}",
"β‘",
"qpm-card"
),
_create_metric_card(
"Avg Latency",
f"{overview.get('avg_latency_ms', 0):.1f}ms",
"β±οΈ",
"latency-card"
),
_create_metric_card(
"Success Rate",
f"{overview.get('success_rate', 0):.1f}%",
"β
",
"success-card"
)
]
# System status
status_indicators = _create_status_indicators(performance, quality)
# Time series charts
charts = _create_overview_charts(time_series, performance)
return html.Div([
# Key metrics row
html.Div([
html.H2("System Overview", className="section-title"),
html.Div(metrics_cards, className="metrics-cards")
], className="metrics-section"),
# Status indicators
html.Div([
html.H3("System Status", className="subsection-title"),
status_indicators
], className="status-section"),
# Charts
html.Div([
html.H3("Performance Trends", className="subsection-title"),
charts
], className="charts-section")
], className="overview-layout")
def _create_metric_card(title: str, value: str, icon: str, card_id: str) -> html.Div:
"""Create a metric card component."""
return html.Div([
html.Div([
html.Span(icon, className="metric-icon"),
html.Div([
html.H3(str(value), className="metric-value"),
html.P(title, className="metric-title")
], className="metric-text")
], className="metric-content")
], className="metric-card", id=card_id)
def _create_status_indicators(performance: Dict[str, Any], quality: Dict[str, Any]) -> html.Div:
"""Create system status indicators."""
# Determine status colors based on metrics
latency_p95 = performance.get("latency_percentiles", {}).get("p95", 0)
avg_confidence = quality.get("avg_confidence_score", 0)
# Status determination
latency_status = "healthy" if latency_p95 < 500 else "warning" if latency_p95 < 1000 else "critical"
quality_status = "healthy" if avg_confidence > 0.8 else "warning" if avg_confidence > 0.6 else "critical"
status_colors = {
"healthy": "#4CAF50",
"warning": "#FF9800",
"critical": "#F44336"
}
indicators = [
html.Div([
html.Span("β", style={"color": status_colors[latency_status], "fontSize": "20px"}),
html.Span(f"Latency P95: {latency_p95:.1f}ms", className="status-text")
], className="status-indicator"),
html.Div([
html.Span("β", style={"color": status_colors[quality_status], "fontSize": "20px"}),
html.Span(f"Quality Score: {avg_confidence:.2f}", className="status-text")
], className="status-indicator"),
html.Div([
html.Span("β", style={"color": "#4CAF50", "fontSize": "20px"}),
html.Span("Neural Reranking: Active", className="status-text")
], className="status-indicator"),
html.Div([
html.Span("β", style={"color": "#4CAF50", "fontSize": "20px"}),
html.Span("Multi-Backend: Operational", className="status-text")
], className="status-indicator")
]
return html.Div(indicators, className="status-indicators")
def _create_overview_charts(time_series: Dict[str, Any], performance: Dict[str, Any]) -> html.Div:
"""Create overview charts."""
# Queries per second over time
qps_chart = _create_qps_chart(time_series)
# Latency distribution
latency_chart = _create_latency_distribution_chart(performance)
# Component latency breakdown
component_chart = _create_component_latency_chart(performance)
return html.Div([
# Top row - QPS and Latency Distribution
html.Div([
html.Div([
dcc.Graph(figure=qps_chart, config={'displayModeBar': False})
], className="chart-container"),
html.Div([
dcc.Graph(figure=latency_chart, config={'displayModeBar': False})
], className="chart-container")
], className="charts-row"),
# Bottom row - Component breakdown
html.Div([
html.Div([
dcc.Graph(figure=component_chart, config={'displayModeBar': False})
], className="chart-container-full")
], className="charts-row")
])
def _create_qps_chart(time_series: Dict[str, Any]) -> go.Figure:
"""Create queries per second chart."""
timestamps = time_series.get("timestamps", [])
qps_values = time_series.get("qps", [])
fig = go.Figure()
if timestamps and qps_values:
fig.add_trace(go.Scatter(
x=timestamps,
y=qps_values,
mode='lines+markers',
name='QPS',
line=dict(color='#2E86AB', width=3),
marker=dict(size=6)
))
fig.update_layout(
title="Queries Per Second",
xaxis_title="Time",
yaxis_title="QPS",
height=300,
margin=dict(l=50, r=50, t=50, b=50),
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)'
)
return fig
def _create_latency_distribution_chart(performance: Dict[str, Any]) -> go.Figure:
"""Create latency distribution chart."""
latency_percentiles = performance.get("latency_percentiles", {})
percentiles = ['P50', 'P95', 'P99']
values = [
latency_percentiles.get("p50", 0),
latency_percentiles.get("p95", 0),
latency_percentiles.get("p99", 0)
]
colors = ['#4CAF50', '#FF9800', '#F44336']
fig = go.Figure(data=[
go.Bar(
x=percentiles,
y=values,
marker=dict(color=colors),
text=[f'{v:.1f}ms' for v in values],
textposition='auto'
)
])
fig.update_layout(
title="Latency Percentiles",
xaxis_title="Percentile",
yaxis_title="Latency (ms)",
height=300,
margin=dict(l=50, r=50, t=50, b=50),
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)'
)
return fig
def _create_component_latency_chart(performance: Dict[str, Any]) -> go.Figure:
"""Create component latency breakdown chart."""
component_latencies = performance.get("component_latencies", {})
components = list(component_latencies.keys())
latencies = list(component_latencies.values())
# Color mapping for components
color_map = {
"dense_retrieval": "#2E86AB",
"sparse_retrieval": "#A23B72",
"graph_retrieval": "#F18F01",
"neural_reranking": "#C73E1D"
}
colors = [color_map.get(comp, "#666666") for comp in components]
fig = go.Figure(data=[
go.Bar(
x=components,
y=latencies,
marker=dict(color=colors),
text=[f'{lat:.1f}ms' for lat in latencies],
textposition='auto'
)
])
fig.update_layout(
title="Component Latency Breakdown",
xaxis_title="Component",
yaxis_title="Average Latency (ms)",
height=350,
margin=dict(l=50, r=50, t=50, b=50),
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)'
)
return fig |