File size: 19,609 Bytes
5e1a30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
"""
Data validation for backend migrations.

This module provides comprehensive validation tools for ensuring
data integrity during backend migrations, including document
validation, embedding verification, and consistency checks.
"""

import logging
from typing import List, Dict, Any, Set, Optional
import numpy as np
from collections import Counter

from src.core.interfaces import Document

logger = logging.getLogger(__name__)


class ValidationError(Exception):
    """Raised when validation fails."""
    pass


class DataValidator:
    """
    Comprehensive data validator for backend migrations.
    
    This validator performs multiple levels of validation to ensure
    data integrity during migration between different vector database
    backends. It checks document structure, embedding quality,
    metadata consistency, and content integrity.
    
    Validation Categories:
    - Document Structure: Content, metadata, embedding presence
    - Embedding Quality: Dimension consistency, value ranges, NaN/inf checks
    - Metadata Consistency: Required fields, data types, value ranges
    - Content Integrity: Text quality, encoding issues, length validation
    - Statistical Analysis: Distribution analysis, outlier detection
    """
    
    def __init__(self, strict_mode: bool = False):
        """
        Initialize the data validator.
        
        Args:
            strict_mode: Whether to use strict validation criteria
        """
        self.strict_mode = strict_mode
        
        # Validation thresholds
        self.thresholds = {
            "min_content_length": 10 if not strict_mode else 50,
            "max_content_length": 100000,
            "min_embedding_dim": 50,
            "max_embedding_dim": 4096,
            "max_embedding_value": 10.0,
            "min_embedding_norm": 0.01,
            "max_nan_ratio": 0.0,
            "max_duplicate_ratio": 0.1 if not strict_mode else 0.05
        }
        
        logger.info(f"Data validator initialized (strict_mode={strict_mode})")
    
    def validate_documents(self, documents: List[Document]) -> Dict[str, Any]:
        """
        Perform comprehensive validation of document list.
        
        Args:
            documents: List of documents to validate
            
        Returns:
            Dictionary with validation results
        """
        logger.info(f"Validating {len(documents)} documents...")
        
        validation_result = {
            "is_valid": True,
            "total_documents": len(documents),
            "issues": [],
            "warnings": [],
            "statistics": {},
            "validation_details": {}
        }
        
        try:
            # Basic document validation
            self._validate_document_structure(documents, validation_result)
            
            # Embedding validation
            self._validate_embeddings(documents, validation_result)
            
            # Metadata validation
            self._validate_metadata(documents, validation_result)
            
            # Content validation
            self._validate_content(documents, validation_result)
            
            # Statistical analysis
            self._perform_statistical_analysis(documents, validation_result)
            
            # Duplicate detection
            self._detect_duplicates(documents, validation_result)
            
            # Final validation status
            validation_result["is_valid"] = len(validation_result["issues"]) == 0
            
            if validation_result["is_valid"]:
                logger.info("Document validation passed")
            else:
                logger.warning(f"Document validation failed with {len(validation_result['issues'])} issues")
            
            return validation_result
            
        except Exception as e:
            logger.error(f"Validation failed with exception: {str(e)}")
            validation_result["is_valid"] = False
            validation_result["issues"].append(f"Validation exception: {str(e)}")
            return validation_result
    
    def _validate_document_structure(self, documents: List[Document], result: Dict[str, Any]) -> None:
        """Validate basic document structure."""
        issues = []
        
        for i, doc in enumerate(documents):
            try:
                # Check content presence
                if not doc.content:
                    issues.append(f"Document {i}: Empty content")
                
                # Check content type
                if not isinstance(doc.content, str):
                    issues.append(f"Document {i}: Content is not string")
                
                # Check metadata presence
                if not hasattr(doc, 'metadata') or doc.metadata is None:
                    issues.append(f"Document {i}: Missing metadata")
                elif not isinstance(doc.metadata, dict):
                    issues.append(f"Document {i}: Metadata is not dictionary")
                
                # Check embedding presence
                if not hasattr(doc, 'embedding') or doc.embedding is None:
                    issues.append(f"Document {i}: Missing embedding")
                
            except Exception as e:
                issues.append(f"Document {i}: Structure validation error - {str(e)}")
        
        result["issues"].extend(issues)
        result["validation_details"]["structure"] = {
            "checked_documents": len(documents),
            "structure_issues": len(issues)
        }
    
    def _validate_embeddings(self, documents: List[Document], result: Dict[str, Any]) -> None:
        """Validate embedding quality and consistency."""
        issues = []
        warnings = []
        embedding_dims = []
        embedding_norms = []
        
        for i, doc in enumerate(documents):
            if doc.embedding is None:
                continue
            
            try:
                embedding = np.array(doc.embedding)
                
                # Check dimension
                dim = len(embedding)
                embedding_dims.append(dim)
                
                if dim < self.thresholds["min_embedding_dim"]:
                    issues.append(f"Document {i}: Embedding dimension too small ({dim})")
                elif dim > self.thresholds["max_embedding_dim"]:
                    issues.append(f"Document {i}: Embedding dimension too large ({dim})")
                
                # Check for NaN or infinite values
                if np.any(np.isnan(embedding)):
                    issues.append(f"Document {i}: NaN values in embedding")
                if np.any(np.isinf(embedding)):
                    issues.append(f"Document {i}: Infinite values in embedding")
                
                # Check value ranges
                max_val = np.max(np.abs(embedding))
                if max_val > self.thresholds["max_embedding_value"]:
                    warnings.append(f"Document {i}: Large embedding values (max: {max_val:.2f})")
                
                # Check embedding norm
                norm = np.linalg.norm(embedding)
                embedding_norms.append(norm)
                
                if norm < self.thresholds["min_embedding_norm"]:
                    warnings.append(f"Document {i}: Very small embedding norm ({norm:.6f})")
                
                # Check for zero embeddings
                if np.all(embedding == 0):
                    issues.append(f"Document {i}: Zero embedding vector")
                
            except Exception as e:
                issues.append(f"Document {i}: Embedding validation error - {str(e)}")
        
        # Check dimension consistency
        if embedding_dims:
            dim_counts = Counter(embedding_dims)
            if len(dim_counts) > 1:
                issues.append(f"Inconsistent embedding dimensions: {dict(dim_counts)}")
        
        result["issues"].extend(issues)
        result["warnings"].extend(warnings)
        result["validation_details"]["embeddings"] = {
            "checked_embeddings": len(embedding_dims),
            "embedding_issues": len(issues),
            "dimension_consistency": len(set(embedding_dims)) <= 1,
            "common_dimension": max(embedding_dims, default=0) if embedding_dims else 0,
            "norm_statistics": {
                "mean": np.mean(embedding_norms) if embedding_norms else 0,
                "std": np.std(embedding_norms) if embedding_norms else 0,
                "min": np.min(embedding_norms) if embedding_norms else 0,
                "max": np.max(embedding_norms) if embedding_norms else 0
            }
        }
    
    def _validate_metadata(self, documents: List[Document], result: Dict[str, Any]) -> None:
        """Validate metadata consistency and completeness."""
        issues = []
        warnings = []
        metadata_keys = set()
        source_files = set()
        
        for i, doc in enumerate(documents):
            if doc.metadata is None:
                continue
            
            try:
                # Collect metadata keys
                metadata_keys.update(doc.metadata.keys())
                
                # Check for source information
                if "source" in doc.metadata:
                    source_files.add(doc.metadata["source"])
                elif self.strict_mode:
                    warnings.append(f"Document {i}: Missing source metadata")
                
                # Check for chunk information
                if "chunk_index" in doc.metadata:
                    chunk_idx = doc.metadata["chunk_index"]
                    if not isinstance(chunk_idx, int) or chunk_idx < 0:
                        issues.append(f"Document {i}: Invalid chunk_index: {chunk_idx}")
                
                # Check for page information
                if "page" in doc.metadata:
                    page_num = doc.metadata["page"]
                    if not isinstance(page_num, (int, float)) or page_num < 0:
                        warnings.append(f"Document {i}: Invalid page number: {page_num}")
                
            except Exception as e:
                issues.append(f"Document {i}: Metadata validation error - {str(e)}")
        
        result["issues"].extend(issues)
        result["warnings"].extend(warnings)
        result["validation_details"]["metadata"] = {
            "unique_metadata_keys": list(metadata_keys),
            "unique_sources": len(source_files),
            "metadata_issues": len(issues)
        }
    
    def _validate_content(self, documents: List[Document], result: Dict[str, Any]) -> None:
        """Validate document content quality."""
        issues = []
        warnings = []
        content_lengths = []
        
        for i, doc in enumerate(documents):
            if not doc.content:
                continue
            
            try:
                content = doc.content
                content_length = len(content)
                content_lengths.append(content_length)
                
                # Check content length
                if content_length < self.thresholds["min_content_length"]:
                    warnings.append(f"Document {i}: Very short content ({content_length} chars)")
                elif content_length > self.thresholds["max_content_length"]:
                    warnings.append(f"Document {i}: Very long content ({content_length} chars)")
                
                # Check for encoding issues
                try:
                    content.encode('utf-8')
                except UnicodeEncodeError:
                    issues.append(f"Document {i}: Encoding issues detected")
                
                # Check for suspicious characters
                if '\x00' in content:
                    issues.append(f"Document {i}: Null bytes in content")
                
                # Check content quality
                if content.strip() != content:
                    warnings.append(f"Document {i}: Leading/trailing whitespace")
                
                if content.count('\n\n\n') > content_length / 100:
                    warnings.append(f"Document {i}: Excessive empty lines")
                
            except Exception as e:
                issues.append(f"Document {i}: Content validation error - {str(e)}")
        
        result["issues"].extend(issues)
        result["warnings"].extend(warnings)
        result["validation_details"]["content"] = {
            "checked_documents": len(content_lengths),
            "content_issues": len(issues),
            "length_statistics": {
                "mean": np.mean(content_lengths) if content_lengths else 0,
                "std": np.std(content_lengths) if content_lengths else 0,
                "min": np.min(content_lengths) if content_lengths else 0,
                "max": np.max(content_lengths) if content_lengths else 0
            }
        }
    
    def _perform_statistical_analysis(self, documents: List[Document], result: Dict[str, Any]) -> None:
        """Perform statistical analysis of the document collection."""
        stats = {}
        
        try:
            # Basic statistics
            stats["total_documents"] = len(documents)
            stats["documents_with_embeddings"] = sum(1 for doc in documents if doc.embedding)
            stats["documents_with_metadata"] = sum(1 for doc in documents if doc.metadata)
            
            # Content statistics
            content_lengths = [len(doc.content) for doc in documents if doc.content]
            if content_lengths:
                stats["content_length"] = {
                    "mean": np.mean(content_lengths),
                    "median": np.median(content_lengths),
                    "std": np.std(content_lengths),
                    "min": np.min(content_lengths),
                    "max": np.max(content_lengths)
                }
            
            # Embedding statistics
            embeddings = [doc.embedding for doc in documents if doc.embedding]
            if embeddings:
                embedding_matrix = np.array(embeddings)
                stats["embeddings"] = {
                    "dimension": embedding_matrix.shape[1],
                    "mean_norm": np.mean(np.linalg.norm(embedding_matrix, axis=1)),
                    "value_range": {
                        "min": np.min(embedding_matrix),
                        "max": np.max(embedding_matrix),
                        "mean": np.mean(embedding_matrix),
                        "std": np.std(embedding_matrix)
                    }
                }
            
            # Source distribution
            sources = [doc.metadata.get("source", "unknown") for doc in documents if doc.metadata]
            if sources:
                source_counts = Counter(sources)
                stats["sources"] = {
                    "unique_sources": len(source_counts),
                    "documents_per_source": dict(source_counts.most_common(10))
                }
            
        except Exception as e:
            result["warnings"].append(f"Statistical analysis failed: {str(e)}")
        
        result["statistics"] = stats
    
    def _detect_duplicates(self, documents: List[Document], result: Dict[str, Any]) -> None:
        """Detect potential duplicate documents."""
        issues = []
        warnings = []
        
        try:
            # Content-based duplicate detection
            content_hashes = {}
            embedding_similarities = []
            
            for i, doc in enumerate(documents):
                if doc.content:
                    # Simple hash-based duplicate detection
                    content_hash = hash(doc.content.strip().lower())
                    if content_hash in content_hashes:
                        warnings.append(f"Potential duplicate content: documents {content_hashes[content_hash]} and {i}")
                    else:
                        content_hashes[content_hash] = i
            
            # Embedding-based similarity (sample check for performance)
            embeddings = [(i, doc.embedding) for i, doc in enumerate(documents) if doc.embedding]
            
            if len(embeddings) > 1:
                # Sample for performance
                sample_size = min(100, len(embeddings))
                sample_indices = np.random.choice(len(embeddings), sample_size, replace=False)
                
                for i in range(len(sample_indices)):
                    for j in range(i + 1, len(sample_indices)):
                        idx1, emb1 = embeddings[sample_indices[i]]
                        idx2, emb2 = embeddings[sample_indices[j]]
                        
                        similarity = np.dot(emb1, emb2) / (np.linalg.norm(emb1) * np.linalg.norm(emb2))
                        
                        if similarity > 0.99:  # Very high similarity threshold
                            warnings.append(f"Very similar embeddings: documents {idx1} and {idx2} (similarity: {similarity:.3f})")
            
            # Check duplicate ratio
            unique_content = len(content_hashes)
            total_with_content = sum(1 for doc in documents if doc.content)
            
            if total_with_content > 0:
                duplicate_ratio = 1 - (unique_content / total_with_content)
                if duplicate_ratio > self.thresholds["max_duplicate_ratio"]:
                    issues.append(f"High duplicate ratio: {duplicate_ratio:.2%}")
        
        except Exception as e:
            warnings.append(f"Duplicate detection failed: {str(e)}")
        
        result["issues"].extend(issues)
        result["warnings"].extend(warnings)
        result["validation_details"]["duplicates"] = {
            "duplicate_issues": len([issue for issue in issues if "duplicate" in issue.lower()]),
            "similarity_warnings": len([warning for warning in warnings if "similar" in warning.lower()])
        }
    
    def validate_migration_consistency(self, 
                                     source_documents: List[Document], 
                                     target_count: int) -> Dict[str, Any]:
        """
        Validate consistency between source and target after migration.
        
        Args:
            source_documents: Original documents
            target_count: Number of documents in target system
            
        Returns:
            Dictionary with consistency validation results
        """
        result = {
            "is_consistent": True,
            "issues": [],
            "warnings": [],
            "comparison": {}
        }
        
        try:
            source_count = len(source_documents)
            
            # Count consistency
            if source_count != target_count:
                result["is_consistent"] = False
                result["issues"].append(f"Document count mismatch: source={source_count}, target={target_count}")
            
            # Additional consistency checks would go here
            # (e.g., sampling documents and comparing content)
            
            result["comparison"] = {
                "source_count": source_count,
                "target_count": target_count,
                "count_match": source_count == target_count
            }
            
        except Exception as e:
            result["is_consistent"] = False
            result["issues"].append(f"Consistency validation failed: {str(e)}")
        
        return result