File size: 15,241 Bytes
5e1a30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
"""
Adaptive Strategies for Neural Reranking.

This module provides query-type aware reranking strategies that can
adapt model selection and parameters based on query characteristics
to optimize relevance and performance.

Migrated from reranking/ module and simplified for integration with
the enhanced neural reranker in the rerankers/ component.
"""

import logging
import re
import time
from typing import List, Dict, Any, Optional
from dataclasses import dataclass

logger = logging.getLogger(__name__)


@dataclass
class QueryAnalysis:
    """Results of query analysis."""
    query_type: str
    confidence: float
    features: Dict[str, Any]
    recommended_model: str


class QueryTypeDetector:
    """
    Detects query types to enable adaptive reranking strategies.
    
    Analyzes queries to classify them into categories like technical,
    procedural, comparative, etc. to enable optimal model selection.
    """
    
    def __init__(self, confidence_threshold: float = 0.7):
        """
        Initialize query type detector.
        
        Args:
            confidence_threshold: Minimum confidence for classification
        """
        self.confidence_threshold = confidence_threshold
        self.stats = {
            "classifications": 0,
            "type_counts": {},
            "high_confidence": 0,
            "low_confidence": 0
        }
        
        # Model strategies for different query types
        self.strategies = {
            "technical": "technical_model",
            "general": "default_model", 
            "comparative": "technical_model",
            "procedural": "default_model",
            "factual": "default_model"
        }
        
        # Define patterns for different query types
        self.patterns = {
            "technical": [
                r'\b(api|protocol|implementation|configuration|architecture)\b',
                r'\b(install|setup|configure|deploy)\b',
                r'\b(error|exception|debug|troubleshoot)\b',
                r'\b(version|compatibility|requirement)\b'
            ],
            "procedural": [
                r'\bhow to\b',
                r'\bstep by step\b',
                r'\bguide|tutorial|walkthrough\b',
                r'\bprocess|procedure|workflow\b'
            ],
            "comparative": [
                r'\bvs\b|\bversus\b',
                r'\bdifference between\b',
                r'\bcompare|comparison\b',
                r'\bbetter|best|worse|worst\b'
            ],
            "factual": [
                r'\bwhat is\b|\bwho is\b|\bwhere is\b',
                r'\bdefine|definition\b',
                r'\bexplain|describe\b'
            ],
            "general": []  # Catch-all for queries that don't match other patterns
        }
        
        logger.info("QueryTypeDetector initialized with built-in patterns")
    
    def classify_query(self, query: str) -> QueryAnalysis:
        """
        Classify a query into a type category.
        
        Args:
            query: The search query to classify
            
        Returns:
            Query analysis with type, confidence, and features
        """
        query_lower = query.lower()
        type_scores = {}
        
        # Calculate scores for each query type
        for query_type, patterns in self.patterns.items():
            if not patterns:  # Skip empty pattern lists (like general)
                continue
                
            score = 0
            matches = 0
            
            for pattern in patterns:
                if re.search(pattern, query_lower):
                    matches += 1
                    score += 1
            
            # Normalize score by number of patterns
            if patterns:
                type_scores[query_type] = score / len(patterns)
        
        # Find the best matching type
        if type_scores:
            best_type = max(type_scores.keys(), key=lambda k: type_scores[k])
            confidence = type_scores[best_type]
        else:
            best_type = "general"
            confidence = 0.5  # Default confidence for general queries
        
        # Apply confidence threshold
        if confidence < self.confidence_threshold:
            best_type = "general"
            confidence = 0.5
        
        # Extract additional features
        features = self._extract_features(query)
        
        # Get recommended model
        recommended_model = self.strategies.get(best_type, "default_model")
        
        # Update statistics
        self._update_stats(best_type, confidence)
        
        return QueryAnalysis(
            query_type=best_type,
            confidence=confidence,
            features=features,
            recommended_model=recommended_model
        )
    
    def _extract_features(self, query: str) -> Dict[str, Any]:
        """Extract additional features from the query."""
        features = {
            "length": len(query),
            "word_count": len(query.split()),
            "has_question_mark": "?" in query,
            "has_quotes": '"' in query or "'" in query,
            "is_uppercase": query.isupper(),
            "starts_with_question_word": query.lower().startswith(('what', 'how', 'when', 'where', 'why', 'who')),
            "technical_terms": len([w for w in query.lower().split() if w in ['api', 'protocol', 'config', 'setup']])
        }
        
        return features
    
    def _update_stats(self, query_type: str, confidence: float):
        """Update classification statistics."""
        self.stats["classifications"] += 1
        self.stats["type_counts"][query_type] = self.stats["type_counts"].get(query_type, 0) + 1
        
        if confidence >= 0.8:
            self.stats["high_confidence"] += 1
        elif confidence < 0.5:
            self.stats["low_confidence"] += 1
    
    def get_stats(self) -> Dict[str, Any]:
        """Get classification statistics."""
        return self.stats.copy()


class AdaptiveStrategies:
    """
    Adaptive reranking strategies that adjust based on query characteristics.
    
    This component analyzes queries and selects optimal models and parameters
    to maximize relevance while maintaining performance targets.
    """
    
    def __init__(
        self, 
        enabled: bool = True,
        confidence_threshold: float = 0.7,
        enable_dynamic_switching: bool = False,
        performance_window: int = 100,
        quality_threshold: float = 0.8
    ):
        """
        Initialize adaptive strategies.
        
        Args:
            enabled: Whether adaptive strategies are enabled
            confidence_threshold: Minimum confidence for query classification
            enable_dynamic_switching: Whether to enable performance-based model switching
            performance_window: Number of queries to track for performance
            quality_threshold: Quality threshold for model switching
        """
        self.enabled = enabled
        self.enable_dynamic_switching = enable_dynamic_switching
        self.performance_window = performance_window
        self.quality_threshold = quality_threshold
        
        self.detector = QueryTypeDetector(confidence_threshold) if enabled else None
        
        self.stats = {
            "model_selections": 0,
            "adaptations": 0,
            "fallbacks": 0
        }
        
        # Performance tracking for adaptive adjustments
        self.performance_history = []
        
        logger.info(f"AdaptiveStrategies initialized, enabled={enabled}")
    
    def select_model(
        self, 
        query: str, 
        available_models: List[str], 
        default_model: str
    ) -> str:
        """
        Select the optimal model for a given query.
        
        Args:
            query: The search query
            available_models: List of available model names
            default_model: Default model to fall back to
            
        Returns:
            Name of the selected model
        """
        if not self.enabled or not self.detector:
            return default_model
        
        try:
            # Classify the query
            analysis = self.detector.classify_query(query)
            
            # Get recommended model
            recommended_model = analysis.recommended_model
            
            # Check if recommended model is available
            if recommended_model in available_models:
                selected_model = recommended_model
            else:
                logger.warning(f"Recommended model {recommended_model} not available, using default")
                selected_model = default_model
                self.stats["fallbacks"] += 1
            
            # Consider performance-based adaptations
            if self.enable_dynamic_switching:
                selected_model = self._consider_performance_adaptation(
                    selected_model, available_models, default_model
                )
            
            self.stats["model_selections"] += 1
            
            logger.debug(f"Selected model '{selected_model}' for query type '{analysis.query_type}' "
                        f"(confidence: {analysis.confidence:.2f})")
            
            return selected_model
            
        except Exception as e:
            logger.error(f"Model selection failed: {e}")
            self.stats["fallbacks"] += 1
            return default_model
    
    def _consider_performance_adaptation(
        self, 
        current_selection: str, 
        available_models: List[str], 
        default_model: str
    ) -> str:
        """Consider performance-based model adaptation."""
        try:
            # Check recent performance history
            if len(self.performance_history) >= self.performance_window:
                recent_performance = self.performance_history[-self.performance_window:]
                
                # Calculate average quality for current selection
                current_model_performance = [
                    p for p in recent_performance 
                    if p.get("model") == current_selection
                ]
                
                if current_model_performance:
                    avg_quality = sum(p.get("quality", 0) for p in current_model_performance) / len(current_model_performance)
                    
                    # Switch if quality is below threshold
                    if avg_quality < self.quality_threshold:
                        logger.info(f"Switching from {current_selection} due to low quality: {avg_quality:.2f}")
                        self.stats["adaptations"] += 1
                        return default_model
            
            return current_selection
            
        except Exception as e:
            logger.warning(f"Performance adaptation failed: {e}")
            return current_selection
    
    def adapt_parameters(
        self, 
        query: str, 
        model_name: str, 
        base_config: Dict[str, Any]
    ) -> Dict[str, Any]:
        """
        Adapt model parameters based on query characteristics.
        
        Args:
            query: The search query
            model_name: Selected model name
            base_config: Base model configuration
            
        Returns:
            Adapted configuration
        """
        if not self.enabled:
            return base_config
        
        try:
            adapted_config = base_config.copy()
            
            # Adapt batch size based on query complexity
            query_complexity = self._assess_query_complexity(query)
            
            if query_complexity == "high":
                adapted_config["batch_size"] = max(1, adapted_config.get("batch_size", 16) // 2)
            elif query_complexity == "low":
                adapted_config["batch_size"] = min(64, adapted_config.get("batch_size", 16) * 2)
            
            # Adapt number of candidates based on query type
            if self.detector:
                analysis = self.detector.classify_query(query)
                
                if analysis.query_type == "technical":
                    # Technical queries might benefit from more candidates
                    adapted_config["max_candidates"] = min(100, adapted_config.get("max_candidates", 50) * 1.5)
                elif analysis.query_type == "factual":
                    # Factual queries might need fewer candidates
                    adapted_config["max_candidates"] = max(10, adapted_config.get("max_candidates", 50) // 2)
            
            return adapted_config
            
        except Exception as e:
            logger.error(f"Parameter adaptation failed: {e}")
            return base_config
    
    def _assess_query_complexity(self, query: str) -> str:
        """Assess query complexity for parameter adaptation."""
        word_count = len(query.split())
        
        if word_count > 10:
            return "high"
        elif word_count < 3:
            return "low"
        else:
            return "medium"
    
    def record_performance(
        self, 
        model: str, 
        query_type: str, 
        latency_ms: float, 
        quality_score: float
    ):
        """
        Record performance metrics for adaptive learning.
        
        Args:
            model: Model used
            query_type: Type of query
            latency_ms: Processing latency
            quality_score: Quality metric (0-1)
        """
        performance_record = {
            "model": model,
            "query_type": query_type,
            "latency_ms": latency_ms,
            "quality": quality_score,
            "timestamp": time.time()
        }
        
        self.performance_history.append(performance_record)
        
        # Keep only recent history
        max_history = self.performance_window * 2
        if len(self.performance_history) > max_history:
            self.performance_history = self.performance_history[-max_history:]
    
    def get_stats(self) -> Dict[str, Any]:
        """Get adaptive strategies statistics."""
        stats = self.stats.copy()
        
        if self.detector:
            stats["detector"] = self.detector.get_stats()
        
        # Add performance summary
        if self.performance_history:
            recent_performance = self.performance_history[-50:]  # Last 50 records
            stats["recent_performance"] = {
                "avg_latency_ms": sum(p["latency_ms"] for p in recent_performance) / len(recent_performance),
                "avg_quality": sum(p["quality"] for p in recent_performance) / len(recent_performance),
                "total_records": len(self.performance_history)
            }
        
        return stats
    
    def reset_stats(self) -> None:
        """Reset adaptive strategies statistics."""
        self.stats = {
            "model_selections": 0,
            "adaptations": 0,
            "fallbacks": 0
        }
        
        if self.detector:
            self.detector.stats = {
                "classifications": 0,
                "type_counts": {},
                "high_confidence": 0,
                "low_confidence": 0
            }