Spaces:
Sleeping
Sleeping
File size: 19,212 Bytes
5e1a30c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
"""
Core interfaces for the modular RAG system.
This module defines abstract base classes and data structures that form
the foundation of the modular architecture. All component implementations
must inherit from these interfaces to ensure compatibility and testability.
"""
from abc import ABC, abstractmethod
from typing import List, Dict, Any, Optional, Union
from dataclasses import dataclass, field
from pathlib import Path
from enum import Enum
import time
# Forward declaration for type hints
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from .platform_orchestrator import PlatformOrchestrator
@dataclass
class Document:
"""Represents a processed document chunk.
Attributes:
content: The text content of the chunk
metadata: Additional metadata about the chunk (source, page, etc.)
embedding: Optional embedding vector for the chunk
"""
content: str
metadata: Dict[str, Any] = field(default_factory=dict)
embedding: Optional[List[float]] = None
def __post_init__(self):
"""Validate document data."""
if not self.content:
raise ValueError("Document content cannot be empty")
if self.embedding is not None and not isinstance(self.embedding, list):
raise TypeError("Embedding must be a list of floats")
@dataclass
class RetrievalResult:
"""Result from a retrieval operation.
Attributes:
document: The retrieved document
score: Relevance score (higher is better)
retrieval_method: Method used for retrieval (e.g., 'semantic', 'hybrid')
metadata: Additional metadata about the retrieval process
"""
document: Document
score: float
retrieval_method: str
metadata: Dict[str, Any] = field(default_factory=dict)
def __post_init__(self):
"""Validate retrieval result data."""
if not isinstance(self.document, Document):
raise TypeError("document must be a Document instance")
if not 0 <= self.score <= 1:
raise ValueError("Score must be between 0 and 1")
@dataclass
class Answer:
"""Generated answer with metadata.
Attributes:
text: The generated answer text
sources: List of source documents used
confidence: Confidence score (0-1)
metadata: Additional metadata (e.g., generation params)
"""
text: str
sources: List[Document]
confidence: float
metadata: Dict[str, Any] = field(default_factory=dict)
def __post_init__(self):
"""Validate answer data."""
if not self.text:
raise ValueError("Answer text cannot be empty")
if not 0 <= self.confidence <= 1:
raise ValueError("Confidence must be between 0 and 1")
if not isinstance(self.sources, list):
raise TypeError("Sources must be a list of Documents")
class ComponentBase(ABC):
"""Base interface for all system components.
This interface defines standard methods that all components must implement
to enable universal platform service access. Components implementing this
interface can use platform services for health monitoring, analytics,
configuration management, and other cross-cutting concerns.
"""
@abstractmethod
def get_health_status(self) -> 'HealthStatus':
"""Get the current health status of the component.
Returns:
HealthStatus object with component health information
"""
pass
@abstractmethod
def get_metrics(self) -> Dict[str, Any]:
"""Get component-specific metrics.
Returns:
Dictionary containing component metrics (performance, usage, etc.)
"""
pass
@abstractmethod
def get_capabilities(self) -> List[str]:
"""Get list of component capabilities.
Returns:
List of capability strings describing what the component can do
"""
pass
@abstractmethod
def initialize_services(self, platform: 'PlatformOrchestrator') -> None:
"""Initialize platform services for the component.
Args:
platform: PlatformOrchestrator instance providing services
"""
pass
class DocumentProcessor(ComponentBase):
"""Interface for document processing strategies.
Implementations should handle different file formats and
convert them into a list of Document chunks.
"""
@abstractmethod
def process(self, file_path: Path) -> List[Document]:
"""Process a document into chunks.
Args:
file_path: Path to the document file
Returns:
List of Document chunks
Raises:
ValueError: If file format is not supported
IOError: If file cannot be read
"""
pass
@abstractmethod
def supported_formats(self) -> List[str]:
"""Return list of supported file extensions.
Returns:
List of extensions (e.g., ['.pdf', '.txt'])
"""
pass
class Embedder(ComponentBase):
"""Interface for embedding generation.
Implementations should convert text into numerical vectors
suitable for similarity search.
"""
@abstractmethod
def embed(self, texts: List[str]) -> List[List[float]]:
"""Generate embeddings for texts.
Args:
texts: List of text strings to embed
Returns:
List of embedding vectors (same length as input)
Raises:
ValueError: If texts is empty
"""
pass
@abstractmethod
def embedding_dim(self) -> int:
"""Return the dimension of embeddings.
Returns:
Integer dimension (e.g., 384, 768)
"""
pass
class VectorStore(ComponentBase):
"""Interface for vector storage backends.
Implementations should provide efficient storage and
similarity search for document embeddings.
"""
@abstractmethod
def add(self, documents: List[Document]) -> None:
"""Add documents to the store.
Args:
documents: List of documents with embeddings
Raises:
ValueError: If documents don't have embeddings
"""
pass
@abstractmethod
def search(self, query_embedding: List[float], k: int = 5) -> List[RetrievalResult]:
"""Search for similar documents.
Args:
query_embedding: Query vector
k: Number of results to return
Returns:
List of retrieval results sorted by score (descending)
Raises:
ValueError: If k <= 0 or query_embedding is invalid
"""
pass
@abstractmethod
def delete(self, doc_ids: List[str]) -> None:
"""Delete documents by ID.
Args:
doc_ids: List of document IDs to delete
Raises:
KeyError: If document ID not found
"""
pass
@abstractmethod
def clear(self) -> None:
"""Clear all documents from the store."""
pass
class Retriever(ComponentBase):
"""Interface for retrieval strategies.
Implementations can use different approaches like
semantic search, BM25, or hybrid methods.
"""
@abstractmethod
def retrieve(self, query: str, k: int = 5) -> List[RetrievalResult]:
"""Retrieve relevant documents for a query.
Args:
query: Search query string
k: Number of results to return
Returns:
List of retrieval results
Raises:
ValueError: If query is empty or k <= 0
"""
pass
class AnswerGenerator(ComponentBase):
"""Interface for answer generation.
Implementations can use different models and strategies
for generating answers from context documents.
"""
@abstractmethod
def generate(self, query: str, context: List[Document]) -> Answer:
"""Generate answer from query and context.
Args:
query: User question
context: List of relevant documents
Returns:
Generated answer with metadata
Raises:
ValueError: If query is empty or context is None
"""
pass
@dataclass
class QueryOptions:
"""Query processing options.
Attributes:
k: Number of documents to retrieve
rerank: Whether to apply reranking
max_tokens: Maximum tokens for context
temperature: LLM temperature setting
stream: Whether to stream responses
"""
k: int = 5
rerank: bool = True
max_tokens: int = 2048
temperature: float = 0.7
stream: bool = False
class QueryProcessor(ComponentBase):
"""Interface for query processing workflow.
Implementations orchestrate the complete query workflow:
analyze β retrieve β select β generate β assemble.
"""
@abstractmethod
def process(self, query: str, options: Optional[QueryOptions] = None) -> Answer:
"""Process a query end-to-end and return a complete answer.
Args:
query: User query string
options: Optional query processing options
Returns:
Complete Answer object with text, sources, and metadata
Raises:
ValueError: If query is empty or options are invalid
RuntimeError: If processing pipeline fails
"""
pass
@abstractmethod
def analyze_query(self, query: str) -> Dict[str, Any]:
"""Analyze query characteristics without full processing.
Args:
query: User query string
Returns:
Dictionary with query analysis results
"""
pass
# Platform Orchestrator Service Interfaces
# These interfaces define the system-wide services that ALL components can use
@dataclass
class HealthStatus:
"""Health status information for a component."""
is_healthy: bool
last_check: float = field(default_factory=time.time)
issues: List[str] = field(default_factory=list)
metrics: Dict[str, Any] = field(default_factory=dict)
component_name: str = ""
def __post_init__(self):
"""Validate health status data."""
if not isinstance(self.is_healthy, bool):
raise TypeError("is_healthy must be a boolean")
if not isinstance(self.issues, list):
raise TypeError("issues must be a list of strings")
@dataclass
class ComponentMetrics:
"""Metrics for a component."""
component_name: str
component_type: str
timestamp: float = field(default_factory=time.time)
performance_metrics: Dict[str, Any] = field(default_factory=dict)
resource_usage: Dict[str, Any] = field(default_factory=dict)
error_count: int = 0
success_count: int = 0
def __post_init__(self):
"""Validate metrics data."""
if not self.component_name:
raise ValueError("component_name cannot be empty")
if not self.component_type:
raise ValueError("component_type cannot be empty")
@dataclass
class ExperimentAssignment:
"""Assignment for an A/B test experiment."""
experiment_id: str
variant: str
assignment_time: float = field(default_factory=time.time)
context: Dict[str, Any] = field(default_factory=dict)
def __post_init__(self):
"""Validate experiment assignment data."""
if not self.experiment_id:
raise ValueError("experiment_id cannot be empty")
if not self.variant:
raise ValueError("variant cannot be empty")
@dataclass
class ExperimentResult:
"""Result from an A/B test experiment."""
experiment_id: str
variant: str
outcome: Dict[str, Any]
timestamp: float = field(default_factory=time.time)
success: bool = True
def __post_init__(self):
"""Validate experiment result data."""
if not self.experiment_id:
raise ValueError("experiment_id cannot be empty")
if not self.variant:
raise ValueError("variant cannot be empty")
if not isinstance(self.outcome, dict):
raise TypeError("outcome must be a dictionary")
@dataclass
class BackendStatus:
"""Status information for a backend."""
backend_name: str
is_available: bool
last_check: float = field(default_factory=time.time)
health_metrics: Dict[str, Any] = field(default_factory=dict)
error_message: Optional[str] = None
def __post_init__(self):
"""Validate backend status data."""
if not self.backend_name:
raise ValueError("backend_name cannot be empty")
if not isinstance(self.is_available, bool):
raise TypeError("is_available must be a boolean")
class ComponentHealthService(ABC):
"""Service interface for component health monitoring."""
@abstractmethod
def check_component_health(self, component: Any) -> HealthStatus:
"""Check the health of a component.
Args:
component: Component instance to check
Returns:
HealthStatus object with health information
"""
pass
@abstractmethod
def monitor_component_health(self, component: Any) -> None:
"""Start monitoring a component's health.
Args:
component: Component instance to monitor
"""
pass
@abstractmethod
def report_component_failure(self, component: Any, error: Exception) -> None:
"""Report a component failure.
Args:
component: Component that failed
error: Exception that occurred
"""
pass
@abstractmethod
def get_system_health_summary(self) -> Dict[str, Any]:
"""Get a summary of system health.
Returns:
Dictionary with system health information
"""
pass
class SystemAnalyticsService(ABC):
"""Service interface for system analytics collection."""
@abstractmethod
def collect_component_metrics(self, component: Any) -> ComponentMetrics:
"""Collect metrics from a component.
Args:
component: Component instance to collect metrics from
Returns:
ComponentMetrics object with collected metrics
"""
pass
@abstractmethod
def aggregate_system_metrics(self) -> Dict[str, Any]:
"""Aggregate metrics across all components.
Returns:
Dictionary with system-wide metrics
"""
pass
@abstractmethod
def track_component_performance(self, component: Any, metrics: Dict[str, Any]) -> None:
"""Track performance metrics for a component.
Args:
component: Component instance
metrics: Performance metrics to track
"""
pass
@abstractmethod
def generate_analytics_report(self) -> Dict[str, Any]:
"""Generate a comprehensive analytics report.
Returns:
Dictionary with analytics report
"""
pass
class ABTestingService(ABC):
"""Service interface for A/B testing."""
@abstractmethod
def assign_experiment(self, context: Dict[str, Any]) -> ExperimentAssignment:
"""Assign a user to an experiment.
Args:
context: Context information for assignment
Returns:
ExperimentAssignment object
"""
pass
@abstractmethod
def track_experiment_outcome(self, experiment_id: str, variant: str, outcome: Dict[str, Any]) -> None:
"""Track the outcome of an experiment.
Args:
experiment_id: Unique experiment identifier
variant: Variant that was tested
outcome: Outcome data
"""
pass
@abstractmethod
def get_experiment_results(self, experiment_name: str) -> List[ExperimentResult]:
"""Get results for an experiment.
Args:
experiment_name: Name of the experiment
Returns:
List of experiment results
"""
pass
@abstractmethod
def configure_experiment(self, experiment_config: Dict[str, Any]) -> None:
"""Configure a new experiment.
Args:
experiment_config: Configuration for the experiment
"""
pass
class ConfigurationService(ABC):
"""Service interface for configuration management."""
@abstractmethod
def get_component_config(self, component_name: str) -> Dict[str, Any]:
"""Get configuration for a component.
Args:
component_name: Name of the component
Returns:
Dictionary with component configuration
"""
pass
@abstractmethod
def update_component_config(self, component_name: str, config: Dict[str, Any]) -> None:
"""Update configuration for a component.
Args:
component_name: Name of the component
config: New configuration
"""
pass
@abstractmethod
def validate_configuration(self, config: Dict[str, Any]) -> List[str]:
"""Validate a configuration.
Args:
config: Configuration to validate
Returns:
List of validation errors (empty if valid)
"""
pass
@abstractmethod
def get_system_configuration(self) -> Dict[str, Any]:
"""Get the complete system configuration.
Returns:
Dictionary with system configuration
"""
pass
class BackendManagementService(ABC):
"""Service interface for backend management."""
@abstractmethod
def register_backend(self, backend_name: str, backend_config: Dict[str, Any]) -> None:
"""Register a new backend.
Args:
backend_name: Name of the backend
backend_config: Configuration for the backend
"""
pass
@abstractmethod
def switch_component_backend(self, component: Any, backend_name: str) -> None:
"""Switch a component to a different backend.
Args:
component: Component to switch
backend_name: Name of the target backend
"""
pass
@abstractmethod
def get_backend_status(self, backend_name: str) -> BackendStatus:
"""Get status information for a backend.
Args:
backend_name: Name of the backend
Returns:
BackendStatus object with status information
"""
pass
@abstractmethod
def migrate_component_data(self, component: Any, from_backend: str, to_backend: str) -> None:
"""Migrate component data between backends.
Args:
component: Component to migrate
from_backend: Source backend name
to_backend: Target backend name
"""
pass
|