Spaces:
Running
Running
File size: 16,035 Bytes
5e1a30c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
#!/usr/bin/env python3
"""
Retrieval Quality Evaluator using RAGAS Framework
=================================================
Implements proper RAG evaluation metrics focused on retrieval quality:
- Context Precision: relevant_docs / total_retrieved_docs
- Context Recall: relevant_docs / total_relevant_docs
- Mean Reciprocal Rank (MRR): ranking quality
- NDCG@K: position-weighted relevance scoring
This replaces the inadequate 0.8000 "quality score" with meaningful metrics.
"""
import sys
import time
import logging
from pathlib import Path
from typing import List, Dict, Any, Tuple, Optional
import numpy as np
from dataclasses import dataclass
# Add project root to path
project_root = Path(__file__).parent.parent.parent
sys.path.append(str(project_root))
from src.core.platform_orchestrator import PlatformOrchestrator
from src.core.interfaces import Document
logger = logging.getLogger(__name__)
@dataclass
class QueryResult:
"""Result of a single query evaluation."""
query_id: str
query: str
retrieved_docs: List[Dict[str, Any]]
ground_truth_relevant: List[str] # Document IDs that should be relevant
context_precision: float
context_recall: float
mrr: float
ndcg_at_5: float
response_time: float
@dataclass
class RetrievalEvaluationResults:
"""Complete evaluation results across all queries."""
config_name: str
query_results: List[QueryResult]
avg_context_precision: float
avg_context_recall: float
avg_mrr: float
avg_ndcg_at_5: float
avg_response_time: float
total_queries: int
class RetrievalQualityEvaluator:
"""
Evaluator for retrieval quality using proper RAG metrics.
Focuses on the key question: Are we retrieving the RIGHT documents?
"""
def __init__(self, platform_orchestrator: PlatformOrchestrator):
"""Initialize with a configured platform orchestrator."""
self.platform_orchestrator = platform_orchestrator
self.indexed_documents = []
def index_documents(self, documents: List[Document]) -> None:
"""Index documents for retrieval evaluation."""
logger.info(f"Indexing {len(documents)} documents for evaluation")
self.indexed_documents = documents
self.platform_orchestrator.index_documents(documents)
logger.info("Documents indexed successfully")
def calculate_context_precision(self, retrieved_docs: List[Dict], relevant_doc_ids: List[str]) -> float:
"""
Calculate Context Precision: relevant_retrieved / total_retrieved
Measures signal-to-noise ratio in retrieval results.
Higher is better - indicates fewer irrelevant documents retrieved.
"""
if not retrieved_docs:
return 0.0
relevant_retrieved = sum(1 for doc in retrieved_docs
if doc.get('source', '') in relevant_doc_ids)
return relevant_retrieved / len(retrieved_docs)
def calculate_context_recall(self, retrieved_docs: List[Dict], relevant_doc_ids: List[str]) -> float:
"""
Calculate Context Recall: relevant_retrieved / total_relevant
Measures coverage of relevant information.
Higher is better - indicates we found most relevant documents.
"""
if not relevant_doc_ids:
return 1.0 # No relevant docs to find
retrieved_doc_ids = set(doc.get('source', '') for doc in retrieved_docs)
relevant_retrieved = sum(1 for doc_id in relevant_doc_ids
if doc_id in retrieved_doc_ids)
return relevant_retrieved / len(relevant_doc_ids)
def calculate_mrr(self, retrieved_docs: List[Dict], relevant_doc_ids: List[str]) -> float:
"""
Calculate Mean Reciprocal Rank: 1/rank_of_first_relevant_doc
Measures ranking quality - how quickly we find relevant documents.
Higher is better - indicates relevant docs appear early in ranking.
"""
for rank, doc in enumerate(retrieved_docs, 1):
if doc.get('source', '') in relevant_doc_ids:
return 1.0 / rank
return 0.0 # No relevant documents found
def calculate_ndcg_at_k(self, retrieved_docs: List[Dict], relevant_doc_ids: List[str], k: int = 5) -> float:
"""
Calculate Normalized Discounted Cumulative Gain at K.
Measures ranking quality with position weighting.
Higher positions get higher weights, relevant docs should appear early.
"""
if not retrieved_docs or not relevant_doc_ids:
return 0.0
# Calculate DCG@K
dcg = 0.0
for i, doc in enumerate(retrieved_docs[:k]):
if doc.get('source', '') in relevant_doc_ids:
# Relevant document gets score of 1, discounted by position
dcg += 1.0 / np.log2(i + 2) # +2 because log2(1) = 0
# Calculate IDCG@K (ideal ranking - all relevant docs first)
num_relevant = min(len(relevant_doc_ids), k)
idcg = sum(1.0 / np.log2(i + 2) for i in range(num_relevant))
return dcg / idcg if idcg > 0 else 0.0
def evaluate_single_query(self, query_id: str, query: str,
relevant_doc_ids: List[str]) -> QueryResult:
"""
Evaluate retrieval quality for a single query.
Returns comprehensive metrics for this specific query.
"""
logger.info(f"Evaluating query: {query}")
# Measure retrieval performance
start_time = time.time()
# Get retrieval results (without generating answer)
retriever = self.platform_orchestrator._components.get('retriever')
if not retriever:
raise ValueError("No retriever component found in platform orchestrator")
# Perform retrieval
retrieved_results = retriever.retrieve(query, k=10) # Get top 10 for evaluation
response_time = time.time() - start_time
# Convert results to evaluation format
retrieved_docs = []
for result in retrieved_results:
retrieved_docs.append({
'content': result.document.content,
'source': result.document.metadata.get('source', ''),
'score': result.score
})
# Calculate all metrics
context_precision = self.calculate_context_precision(retrieved_docs, relevant_doc_ids)
context_recall = self.calculate_context_recall(retrieved_docs, relevant_doc_ids)
mrr = self.calculate_mrr(retrieved_docs, relevant_doc_ids)
ndcg_at_5 = self.calculate_ndcg_at_k(retrieved_docs, relevant_doc_ids, k=5)
logger.info(f"Query '{query}' results:")
logger.info(f" Context Precision: {context_precision:.3f}")
logger.info(f" Context Recall: {context_recall:.3f}")
logger.info(f" MRR: {mrr:.3f}")
logger.info(f" NDCG@5: {ndcg_at_5:.3f}")
logger.info(f" Response Time: {response_time:.3f}s")
return QueryResult(
query_id=query_id,
query=query,
retrieved_docs=retrieved_docs,
ground_truth_relevant=relevant_doc_ids,
context_precision=context_precision,
context_recall=context_recall,
mrr=mrr,
ndcg_at_5=ndcg_at_5,
response_time=response_time
)
def evaluate_query_set(self, queries: List[Dict[str, Any]],
config_name: str = "unknown") -> RetrievalEvaluationResults:
"""
Evaluate retrieval quality across a set of queries.
Args:
queries: List of dicts with 'id', 'query', 'relevant_docs' keys
config_name: Name of configuration being evaluated
Returns:
Comprehensive evaluation results with averages across all queries
"""
logger.info(f"Starting evaluation of {len(queries)} queries for config: {config_name}")
query_results = []
for query_data in queries:
try:
result = self.evaluate_single_query(
query_id=query_data['id'],
query=query_data['query'],
relevant_doc_ids=query_data['relevant_docs']
)
query_results.append(result)
except Exception as e:
logger.error(f"Failed to evaluate query {query_data['id']}: {e}")
continue
if not query_results:
logger.error("No queries were successfully evaluated")
return RetrievalEvaluationResults(
config_name=config_name,
query_results=[],
avg_context_precision=0.0,
avg_context_recall=0.0,
avg_mrr=0.0,
avg_ndcg_at_5=0.0,
avg_response_time=0.0,
total_queries=0
)
# Calculate averages
avg_context_precision = np.mean([r.context_precision for r in query_results])
avg_context_recall = np.mean([r.context_recall for r in query_results])
avg_mrr = np.mean([r.mrr for r in query_results])
avg_ndcg_at_5 = np.mean([r.ndcg_at_5 for r in query_results])
avg_response_time = np.mean([r.response_time for r in query_results])
results = RetrievalEvaluationResults(
config_name=config_name,
query_results=query_results,
avg_context_precision=avg_context_precision,
avg_context_recall=avg_context_recall,
avg_mrr=avg_mrr,
avg_ndcg_at_5=avg_ndcg_at_5,
avg_response_time=avg_response_time,
total_queries=len(query_results)
)
# Log summary
logger.info(f"Evaluation complete for {config_name}:")
logger.info(f" Average Context Precision: {avg_context_precision:.3f}")
logger.info(f" Average Context Recall: {avg_context_recall:.3f}")
logger.info(f" Average MRR: {avg_mrr:.3f}")
logger.info(f" Average NDCG@5: {avg_ndcg_at_5:.3f}")
logger.info(f" Average Response Time: {avg_response_time:.3f}s")
return results
def compare_configurations(self, baseline_results: RetrievalEvaluationResults,
optimized_results: RetrievalEvaluationResults) -> Dict[str, Any]:
"""
Compare baseline vs optimized configuration results.
Returns statistical comparison with improvement percentages.
"""
comparison = {
'baseline_config': baseline_results.config_name,
'optimized_config': optimized_results.config_name,
'improvements': {}
}
metrics = [
('context_precision', 'Context Precision'),
('context_recall', 'Context Recall'),
('mrr', 'Mean Reciprocal Rank'),
('ndcg_at_5', 'NDCG@5'),
('response_time', 'Response Time (lower is better)')
]
for metric_key, metric_name in metrics:
baseline_val = getattr(baseline_results, f'avg_{metric_key}')
optimized_val = getattr(optimized_results, f'avg_{metric_key}')
if baseline_val > 0:
if metric_key == 'response_time':
# For response time, lower is better
improvement_pct = ((baseline_val - optimized_val) / baseline_val) * 100
else:
# For other metrics, higher is better
improvement_pct = ((optimized_val - baseline_val) / baseline_val) * 100
else:
improvement_pct = 0.0
comparison['improvements'][metric_key] = {
'metric_name': metric_name,
'baseline': baseline_val,
'optimized': optimized_val,
'improvement_pct': improvement_pct,
'significant': abs(improvement_pct) >= 5.0 # 5% threshold
}
return comparison
def print_evaluation_report(self, results: RetrievalEvaluationResults) -> None:
"""Print a comprehensive evaluation report."""
print(f"\n{'='*80}")
print(f"RETRIEVAL QUALITY EVALUATION REPORT")
print(f"Configuration: {results.config_name}")
print(f"{'='*80}")
print(f"\nπ OVERALL METRICS (Average across {results.total_queries} queries)")
print("-" * 60)
print(f"Context Precision: {results.avg_context_precision:.3f}")
print(f"Context Recall: {results.avg_context_recall:.3f}")
print(f"Mean Reciprocal Rank: {results.avg_mrr:.3f}")
print(f"NDCG@5: {results.avg_ndcg_at_5:.3f}")
print(f"Avg Response Time: {results.avg_response_time:.3f}s")
# Performance assessment
print(f"\nπ― PERFORMANCE ASSESSMENT")
print("-" * 60)
# Context Precision assessment
if results.avg_context_precision >= 0.8:
precision_status = "EXCELLENT β
"
elif results.avg_context_precision >= 0.6:
precision_status = "GOOD π"
elif results.avg_context_precision >= 0.4:
precision_status = "FAIR β οΈ"
else:
precision_status = "POOR β"
print(f"Context Precision: {precision_status}")
# Context Recall assessment
if results.avg_context_recall >= 0.8:
recall_status = "EXCELLENT β
"
elif results.avg_context_recall >= 0.6:
recall_status = "GOOD π"
elif results.avg_context_recall >= 0.4:
recall_status = "FAIR β οΈ"
else:
recall_status = "POOR β"
print(f"Context Recall: {recall_status}")
# MRR assessment
if results.avg_mrr >= 0.7:
mrr_status = "EXCELLENT β
"
elif results.avg_mrr >= 0.5:
mrr_status = "GOOD π"
elif results.avg_mrr >= 0.3:
mrr_status = "FAIR β οΈ"
else:
mrr_status = "POOR β"
print(f"Ranking Quality: {mrr_status}")
print(f"\nπ DETAILED QUERY RESULTS")
print("-" * 60)
for result in results.query_results[:5]: # Show first 5 queries
print(f"Query: {result.query[:50]}...")
print(f" Precision: {result.context_precision:.3f}, Recall: {result.context_recall:.3f}, MRR: {result.mrr:.3f}")
if len(results.query_results) > 5:
print(f"... and {len(results.query_results) - 5} more queries")
if __name__ == "__main__":
# Test the evaluator
logging.basicConfig(level=logging.INFO)
# Initialize platform orchestrator with test config
po = PlatformOrchestrator("config/test_epic2_graph_enabled.yaml")
evaluator = RetrievalQualityEvaluator(po)
# Create test documents
test_docs = [
Document(
content="RISC-V is an open-source instruction set architecture based on RISC principles.",
metadata={"source": "riscv-intro.pdf", "title": "RISC-V Introduction"}
),
Document(
content="The RISC-V vector extension provides SIMD capabilities for parallel computation.",
metadata={"source": "riscv-vector.pdf", "title": "RISC-V Vector Extension"}
)
]
evaluator.index_documents(test_docs)
# Test query
test_queries = [{
'id': 'TEST_001',
'query': 'What is RISC-V?',
'relevant_docs': ['riscv-intro.pdf']
}]
results = evaluator.evaluate_query_set(test_queries, "test_config")
evaluator.print_evaluation_report(results) |