enhanced-rag-demo / demo /utils /database_manager.py
Arthur Passuello
Cleaned up displayed content
1cdeab3
"""
Database Manager for Epic 2 Demo Persistent Storage
==================================================
Handles database connections, operations, and high-level persistence management
for the Epic 2 demo to achieve <5 second initialization times.
"""
import logging
import hashlib
import time
import uuid
from datetime import datetime, timedelta
from pathlib import Path
from typing import Dict, Any, List, Optional, Tuple, Union
from contextlib import contextmanager
import numpy as np
from sqlalchemy import create_engine, text
from sqlalchemy.orm import sessionmaker, Session
from sqlalchemy.exc import SQLAlchemyError
from sqlalchemy.pool import StaticPool
from .database_schema import Base, Document, DocumentChunk, SystemCache, ProcessingSession, DatabaseSchema
logger = logging.getLogger(__name__)
class DatabaseManager:
"""Manages database operations for Epic 2 demo persistence"""
def __init__(self, database_url: str = "sqlite:///demo/epic2_demo.db", echo: bool = False):
"""
Initialize database manager
Args:
database_url: Database connection URL
echo: Whether to echo SQL statements (for debugging)
"""
self.database_url = database_url
self.echo = echo
# Create database directory if using SQLite
if database_url.startswith("sqlite:///"):
db_path = Path(database_url.replace("sqlite:///", ""))
db_path.parent.mkdir(parents=True, exist_ok=True)
# Create engine with optimized settings
self.engine = create_engine(
database_url,
echo=echo,
poolclass=StaticPool if "sqlite" in database_url else None,
connect_args={"check_same_thread": False} if "sqlite" in database_url else {},
pool_pre_ping=True,
pool_recycle=3600 # 1 hour
)
# Create session factory
self.SessionLocal = sessionmaker(
autocommit=False,
autoflush=False,
bind=self.engine
)
# Initialize database
self._initialize_database()
def _initialize_database(self) -> None:
"""Initialize database tables and indexes"""
try:
logger.info("Initializing database schema...")
DatabaseSchema.create_all_tables(self.engine)
# Optimize SQLite if using it
if "sqlite" in self.database_url:
self._optimize_sqlite()
logger.info("Database initialization complete")
except Exception as e:
logger.error(f"Database initialization failed: {e}")
raise
def _optimize_sqlite(self) -> None:
"""Apply SQLite-specific optimizations"""
try:
with self.engine.connect() as conn:
# Performance optimizations
conn.execute(text("PRAGMA journal_mode = WAL"))
conn.execute(text("PRAGMA synchronous = NORMAL"))
conn.execute(text("PRAGMA cache_size = 10000"))
conn.execute(text("PRAGMA temp_store = MEMORY"))
conn.execute(text("PRAGMA mmap_size = 268435456")) # 256MB
conn.commit()
logger.info("SQLite optimizations applied")
except Exception as e:
logger.warning(f"SQLite optimization failed: {e}")
@contextmanager
def get_session(self):
"""Context manager for database sessions"""
session = self.SessionLocal()
try:
yield session
session.commit()
except Exception as e:
session.rollback()
logger.error(f"Database session error: {e}")
raise
finally:
session.close()
def get_database_stats(self) -> Dict[str, Any]:
"""Get comprehensive database statistics"""
with self.get_session() as session:
stats = DatabaseSchema.get_database_stats(session)
# Add database file size if SQLite
if "sqlite" in self.database_url:
try:
db_path = Path(self.database_url.replace("sqlite:///", ""))
if db_path.exists():
stats['database_size_mb'] = db_path.stat().st_size / (1024 * 1024)
except:
pass
return stats
def is_database_populated(self) -> bool:
"""Check if database has any processed documents"""
try:
with self.get_session() as session:
count = session.query(Document).filter(
Document.processing_status == 'completed'
).count()
return count > 0
except:
return False
def is_cache_valid(self, pdf_files: List[Path], processor_config: Dict[str, Any],
embedder_config: Dict[str, Any]) -> bool:
"""
Check if database cache is valid for given files and configurations
Args:
pdf_files: List of PDF files to check
processor_config: Document processor configuration
embedder_config: Embedder configuration
Returns:
True if cache is valid and up-to-date
"""
try:
with self.get_session() as session:
# Simple check: do we have any completed documents in database?
total_docs = session.query(Document).filter(
Document.processing_status == 'completed'
).count()
total_chunks = session.query(DocumentChunk).filter(
DocumentChunk.embedding_vector != None
).count()
logger.info(f"Database validation: {total_docs} documents, {total_chunks} chunks with embeddings")
if total_docs == 0 or total_chunks == 0:
logger.info("No valid documents/chunks in database")
return False
# Check if we have any matching files
available_files = session.query(Document.filename).filter(
Document.processing_status == 'completed'
).all()
available_filenames = [doc.filename for doc in available_files]
requested_filenames = [pdf_file.name for pdf_file in pdf_files]
# Option A: If no corpus files requested but database has documents, load ALL
if len(requested_filenames) == 0 and len(available_filenames) > 0:
logger.info(f"No corpus files specified, but database has {len(available_filenames)} documents - will load ALL")
return True
matching_files = [f for f in requested_filenames if f in available_filenames]
logger.info(f"File matching: {len(matching_files)}/{len(requested_filenames)} files available in database")
# Accept if we have at least some matching files
if len(matching_files) > 0:
logger.info("Database cache validation successful (partial match)")
return True
else:
logger.info("No matching files in database")
return False
except Exception as e:
logger.error(f"Cache validation error: {e}")
return False
def load_documents_and_embeddings(self, pdf_files: List[Path]) -> Tuple[List[Any], Optional[np.ndarray]]:
"""
Load documents and embeddings from database
Args:
pdf_files: List of PDF files to load
Returns:
Tuple of (documents, embeddings) or (None, None) if failed
"""
try:
with self.get_session() as session:
# Load all chunks for the specified files
file_names = [f.name for f in pdf_files]
# First check if we have any documents at all
total_docs = session.query(Document).count()
logger.info(f"Total documents in database: {total_docs}")
if total_docs == 0:
logger.warning("No documents found in database")
return None, None
# Check which files we have
available_docs = session.query(Document.filename).filter(
Document.processing_status == 'completed'
).all()
available_files = [doc.filename for doc in available_docs]
logger.info(f"Available files in database: {available_files[:5]}...") # Show first 5
# Option A: If no specific files requested, load ALL documents
if len(file_names) == 0:
logger.info(f"No specific files requested - loading ALL {len(available_files)} documents from database")
chunks = session.query(DocumentChunk).join(Document).filter(
Document.processing_status == 'completed',
DocumentChunk.embedding_vector != None
).order_by(Document.id, DocumentChunk.chunk_index).all()
else:
# Find intersection of requested and available files
matching_files = [f for f in file_names if f in available_files]
logger.info(f"Matching files: {len(matching_files)}/{len(file_names)}")
if not matching_files:
logger.warning("No matching files found in database")
return None, None
chunks = session.query(DocumentChunk).join(Document).filter(
Document.filename.in_(matching_files),
Document.processing_status == 'completed',
DocumentChunk.embedding_vector != None
).order_by(Document.id, DocumentChunk.chunk_index).all()
if not chunks:
logger.warning("No chunks found in database")
return None, None
# Convert chunks to document objects and collect embeddings
documents = []
embeddings = []
for chunk in chunks:
# Create document-like object
doc = {
'id': chunk.id,
'content': chunk.content,
'metadata': chunk.chunk_metadata or {},
'confidence': chunk.confidence_score or 0.8,
'embedding': chunk.get_embedding()
}
# Add document metadata
if doc['metadata'] is None:
doc['metadata'] = {}
doc['metadata'].update({
'source': chunk.document.filename,
'page': chunk.chunk_metadata.get('page', 1) if chunk.chunk_metadata else 1,
'chunk_index': chunk.chunk_index
})
documents.append(doc)
# Collect embedding
embedding = chunk.get_embedding()
if embedding is not None:
embeddings.append(embedding)
else:
logger.warning(f"Missing embedding for chunk {chunk.id}")
if not embeddings:
logger.warning("No embeddings found in database")
return documents, None
embeddings_array = np.array(embeddings)
logger.info(f"Loaded {len(documents)} documents and {embeddings_array.shape} embeddings from database")
return documents, embeddings_array
except Exception as e:
logger.error(f"Failed to load from database: {e}")
return None, None
def save_documents_and_embeddings(self, documents: List[Any], pdf_files: List[Path],
processor_config: Dict[str, Any], embedder_config: Dict[str, Any]) -> bool:
"""
Save documents and embeddings to database
Args:
documents: List of processed document objects
pdf_files: List of source PDF files
processor_config: Document processor configuration
embedder_config: Embedder configuration
Returns:
True if save successful
"""
try:
processor_hash = self._hash_config(processor_config)
embedder_hash = self._hash_config(embedder_config)
# Create processing session
session_id = str(uuid.uuid4())
processing_start = time.time()
with self.get_session() as session:
# Create processing session record
proc_session = ProcessingSession(
session_id=session_id,
processor_config_hash=processor_hash,
embedder_config_hash=embedder_hash,
documents_processed=len(pdf_files),
chunks_created=len(documents)
)
session.add(proc_session)
session.flush()
# Group documents by source file
docs_by_file = {}
for doc in documents:
# Get source and extract filename
metadata = doc.get('metadata', {}) if isinstance(doc, dict) else getattr(doc, 'metadata', {})
source = metadata.get('source', 'unknown')
# Extract filename from full path
import os
if source != 'unknown':
source_filename = os.path.basename(source)
else:
source_filename = metadata.get('source_name', 'unknown')
if source_filename not in docs_by_file:
docs_by_file[source_filename] = []
docs_by_file[source_filename].append(doc)
logger.info(f"Grouped documents by file: {list(docs_by_file.keys())[:5]}...") # Show first 5
# Process each file
for pdf_file in pdf_files:
file_docs = docs_by_file.get(pdf_file.name, [])
if not file_docs:
logger.warning(f"No documents found for file: {pdf_file.name}")
continue
# Create or update document record
file_hash = self._hash_file(pdf_file)
file_mtime = pdf_file.stat().st_mtime
doc_record = session.query(Document).filter(
Document.filename == pdf_file.name
).first()
if not doc_record:
doc_record = Document(
filename=pdf_file.name,
file_path=str(pdf_file),
file_hash=file_hash,
file_size=pdf_file.stat().st_size,
file_mtime=file_mtime,
processor_config_hash=processor_hash,
chunk_count=len(file_docs),
processing_status='completed',
doc_metadata={} # Initialize with empty metadata
)
session.add(doc_record)
session.flush()
else:
# Update existing record
doc_record.file_hash = file_hash
doc_record.file_mtime = file_mtime
doc_record.processor_config_hash = processor_hash
doc_record.chunk_count = len(file_docs)
doc_record.processing_status = 'completed'
doc_record.processed_at = datetime.utcnow()
# Delete old chunks
session.query(DocumentChunk).filter(
DocumentChunk.document_id == doc_record.id
).delete()
# Save chunks
for idx, doc in enumerate(file_docs):
# Get content and metadata properly
if isinstance(doc, dict):
content = doc.get('content', '')
metadata = doc.get('metadata', {})
confidence = doc.get('confidence', 0.8)
else:
content = getattr(doc, 'content', '')
metadata = getattr(doc, 'metadata', {})
confidence = getattr(doc, 'confidence', 0.8)
chunk = DocumentChunk(
document_id=doc_record.id,
chunk_index=idx,
content=content,
content_hash=self._hash_text(content),
chunk_metadata=metadata,
embedding_model=embedder_config.get('model', {}).get('model_name', 'unknown'),
embedder_config_hash=embedder_hash,
confidence_score=confidence
)
# Set embedding if available
embedding = None
if hasattr(doc, 'embedding') and doc.embedding is not None:
embedding = doc.embedding
elif isinstance(doc, dict) and 'embedding' in doc and doc['embedding'] is not None:
embedding = doc['embedding']
if embedding is not None:
# Convert to numpy array if it's a list
if isinstance(embedding, list):
embedding = np.array(embedding, dtype=np.float32)
elif not isinstance(embedding, np.ndarray):
embedding = np.array(embedding, dtype=np.float32)
chunk.set_embedding(embedding)
session.add(chunk)
# Update processing session
processing_time = (time.time() - processing_start) * 1000
proc_session.completed_at = datetime.utcnow()
proc_session.status = 'completed'
proc_session.total_processing_time_ms = processing_time
proc_session.chunks_created = len(documents)
session.commit()
logger.info(f"Successfully saved {len(documents)} documents to database in {processing_time:.0f}ms")
return True
except Exception as e:
logger.error(f"Failed to save to database: {e}")
return False
def cleanup_old_data(self, retention_days: int = 30) -> None:
"""Clean up old processing sessions and orphaned data"""
try:
cutoff_date = datetime.utcnow() - timedelta(days=retention_days)
with self.get_session() as session:
# Clean up old processing sessions
old_sessions = session.query(ProcessingSession).filter(
ProcessingSession.started_at < cutoff_date
).delete()
# Clean up invalid cache entries
invalid_cache = session.query(SystemCache).filter(
SystemCache.is_valid == False
).delete()
session.commit()
logger.info(f"Cleaned up {old_sessions} old sessions and {invalid_cache} invalid cache entries")
except Exception as e:
logger.error(f"Cleanup failed: {e}")
def get_processing_history(self, limit: int = 10) -> List[Dict[str, Any]]:
"""Get recent processing session history"""
try:
with self.get_session() as session:
sessions = session.query(ProcessingSession).order_by(
ProcessingSession.started_at.desc()
).limit(limit).all()
return [
{
'session_id': s.session_id,
'started_at': s.started_at.isoformat(),
'completed_at': s.completed_at.isoformat() if s.completed_at else None,
'status': s.status,
'documents_processed': s.documents_processed,
'chunks_created': s.chunks_created,
'processing_time_ms': s.total_processing_time_ms,
'documents_per_second': s.documents_per_second
}
for s in sessions
]
except Exception as e:
logger.error(f"Failed to get processing history: {e}")
return []
def clear_database(self) -> bool:
"""Clear all data from database (for testing/reset)"""
try:
with self.get_session() as session:
session.query(DocumentChunk).delete()
session.query(Document).delete()
session.query(ProcessingSession).delete()
session.query(SystemCache).delete()
session.commit()
logger.info("Database cleared successfully")
return True
except Exception as e:
logger.error(f"Failed to clear database: {e}")
return False
def _hash_file(self, file_path: Path) -> str:
"""Generate hash of file content"""
try:
with open(file_path, 'rb') as f:
return hashlib.md5(f.read()).hexdigest()
except Exception as e:
logger.warning(f"Failed to hash file {file_path}: {e}")
return ""
def _hash_text(self, text: str) -> str:
"""Generate hash of text content"""
return hashlib.md5(text.encode('utf-8')).hexdigest()
def _hash_config(self, config: Dict[str, Any]) -> str:
"""Generate hash of configuration dictionary"""
try:
import json
# Convert config to string, handling any non-serializable objects
config_str = json.dumps(config, sort_keys=True, default=str)
return hashlib.md5(config_str.encode('utf-8')).hexdigest()
except Exception as e:
logger.warning(f"Config hash generation failed: {e}")
# Fallback to string representation
config_str = str(sorted(config.items()))
return hashlib.md5(config_str.encode('utf-8')).hexdigest()
# Global database manager instance
_db_manager = None
def get_database_manager(database_url: str = "sqlite:///demo/epic2_demo.db") -> DatabaseManager:
"""Get global database manager instance"""
global _db_manager
if _db_manager is None:
_db_manager = DatabaseManager(database_url)
return _db_manager
def reset_database_manager():
"""Reset global database manager (for testing)"""
global _db_manager
_db_manager = None