Spaces:
Running
Running
""" | |
Initialization Performance Profiler | |
=================================== | |
Profiles the Epic 2 demo initialization process to identify bottlenecks | |
and optimize for <5s target. | |
""" | |
import time | |
import logging | |
from contextlib import contextmanager | |
from typing import Dict, Any, List | |
from dataclasses import dataclass, field | |
logger = logging.getLogger(__name__) | |
class InitializationStep: | |
"""Represents a timed initialization step""" | |
name: str | |
start_time: float | |
duration: float | |
metadata: Dict[str, Any] = field(default_factory=dict) | |
def duration_ms(self) -> float: | |
return self.duration * 1000 | |
class InitializationProfiler: | |
"""Profiles initialization steps for performance optimization""" | |
def __init__(self): | |
self.steps: List[InitializationStep] = [] | |
self.start_time: float = 0 | |
self.total_duration: float = 0 | |
def start_profiling(self): | |
"""Start the initialization profiling""" | |
self.start_time = time.time() | |
self.steps.clear() | |
logger.info("Starting initialization profiling") | |
def finish_profiling(self): | |
"""Finish profiling and calculate total time""" | |
self.total_duration = time.time() - self.start_time | |
logger.info(f"Initialization profiling completed in {self.total_duration:.2f}s") | |
def profile_step(self, step_name: str, metadata: Dict[str, Any] = None): | |
"""Context manager to profile an initialization step""" | |
start_time = time.time() | |
logger.info(f"Starting step: {step_name}") | |
try: | |
yield | |
finally: | |
duration = time.time() - start_time | |
step = InitializationStep( | |
name=step_name, | |
start_time=start_time, | |
duration=duration, | |
metadata=metadata or {} | |
) | |
self.steps.append(step) | |
logger.info(f"Completed step: {step_name} in {duration:.2f}s") | |
def get_summary(self) -> Dict[str, Any]: | |
"""Get a summary of initialization performance""" | |
return { | |
"total_time_s": self.total_duration, | |
"target_time_s": 5.0, | |
"over_target_s": max(0, self.total_duration - 5.0), | |
"steps": [ | |
{ | |
"name": step.name, | |
"duration_s": step.duration, | |
"duration_ms": step.duration_ms, | |
"percentage": (step.duration / self.total_duration) * 100 if self.total_duration > 0 else 0, | |
"metadata": step.metadata | |
} | |
for step in self.steps | |
] | |
} | |
def print_report(self): | |
"""Print a detailed profiling report""" | |
print("\n" + "="*80) | |
print("INITIALIZATION PERFORMANCE REPORT") | |
print("="*80) | |
print(f"Total Time: {self.total_duration:.2f}s (target: 5.0s)") | |
if self.total_duration <= 5.0: | |
print("β Target achieved!") | |
else: | |
print(f"β Need to optimize by {self.total_duration - 5.0:.2f}s") | |
print("\nStep Breakdown:") | |
print("-" * 80) | |
print(f"{'Step':<35} {'Time':<10} {'%':<8} {'Details'}") | |
print("-" * 80) | |
for step in sorted(self.steps, key=lambda s: s.duration, reverse=True): | |
percentage = (step.duration / self.total_duration) * 100 if self.total_duration > 0 else 0 | |
details = ", ".join(f"{k}={v}" for k, v in step.metadata.items()) | |
print(f"{step.name:<35} {step.duration:.2f}s{'':<4} {percentage:.1f}%{'':<3} {details}") | |
print("-" * 80) | |
print(f"{'TOTAL':<35} {self.total_duration:.2f}s{'':<4} {'100.0%':<8}") | |
print("="*80) | |
# Optimization recommendations | |
print("\nOPTIMIZATION RECOMMENDATIONS:") | |
print("-" * 80) | |
slowest_steps = sorted(self.steps, key=lambda s: s.duration, reverse=True)[:3] | |
for i, step in enumerate(slowest_steps, 1): | |
print(f"{i}. Optimize '{step.name}' ({step.duration:.2f}s)") | |
print("\n") | |
# Global profiler instance | |
profiler = InitializationProfiler() |