Arthur Passuello
initial commit
5e1a30c
"""
Optimization engine for the calibration system.
Implements the optimization engine component from calibration-system-spec.md
for finding optimal parameter values using various search strategies.
"""
import logging
import time
from typing import Dict, Any, List, Optional, Tuple, Callable, Iterator
from dataclasses import dataclass
from enum import Enum
import numpy as np
from itertools import product
import json
from pathlib import Path
logger = logging.getLogger(__name__)
class OptimizationStrategy(Enum):
"""Available optimization strategies."""
GRID_SEARCH = "grid_search"
BINARY_SEARCH = "binary_search"
RANDOM_SEARCH = "random_search"
GRADIENT_FREE = "gradient_free"
@dataclass
class OptimizationResult:
"""Result of parameter optimization."""
best_parameters: Dict[str, Any]
best_score: float
optimization_history: List[Dict[str, Any]]
total_evaluations: int
optimization_time: float
convergence_info: Dict[str, Any]
class OptimizationEngine:
"""
Finds optimal parameter values using various search strategies.
Implements the optimization strategies specified in calibration-system-spec.md:
- Grid search for exhaustive parameter exploration
- Binary search for single parameter optimization
- Random search for high-dimensional spaces
- Gradient-free optimization for complex parameter interactions
"""
def __init__(self, evaluation_function: Callable[[Dict[str, Any]], float]):
"""
Initialize optimization engine.
Args:
evaluation_function: Function that takes parameters and returns quality score
"""
self.evaluation_function = evaluation_function
self.optimization_history: List[Dict[str, Any]] = []
self.best_result: Optional[OptimizationResult] = None
def optimize(
self,
parameter_space: Dict[str, List[Any]],
target_metric: str = "overall_quality",
strategy: OptimizationStrategy = OptimizationStrategy.GRID_SEARCH,
max_evaluations: Optional[int] = None,
convergence_threshold: float = 0.001,
**strategy_kwargs
) -> OptimizationResult:
"""
Optimize parameters using specified strategy.
Args:
parameter_space: Dictionary mapping parameter names to lists of values
target_metric: Metric to optimize (maximize)
strategy: Optimization strategy to use
max_evaluations: Maximum number of evaluations
convergence_threshold: Convergence threshold for iterative methods
**strategy_kwargs: Additional arguments for specific strategies
Returns:
OptimizationResult with best parameters and optimization details
"""
start_time = time.time()
self.optimization_history = []
logger.info(f"Starting optimization with {strategy.value} strategy")
logger.info(f"Parameter space: {len(list(product(*parameter_space.values())))} combinations")
if strategy == OptimizationStrategy.GRID_SEARCH:
result = self._grid_search(parameter_space, target_metric, max_evaluations)
elif strategy == OptimizationStrategy.BINARY_SEARCH:
result = self._binary_search(parameter_space, target_metric, **strategy_kwargs)
elif strategy == OptimizationStrategy.RANDOM_SEARCH:
result = self._random_search(parameter_space, target_metric, max_evaluations, **strategy_kwargs)
elif strategy == OptimizationStrategy.GRADIENT_FREE:
result = self._gradient_free_search(parameter_space, target_metric, max_evaluations, convergence_threshold, **strategy_kwargs)
else:
raise ValueError(f"Unknown optimization strategy: {strategy}")
optimization_time = time.time() - start_time
# Create final result
optimization_result = OptimizationResult(
best_parameters=result["best_parameters"],
best_score=result["best_score"],
optimization_history=self.optimization_history,
total_evaluations=len(self.optimization_history),
optimization_time=optimization_time,
convergence_info=result.get("convergence_info", {})
)
self.best_result = optimization_result
logger.info(f"Optimization completed in {optimization_time:.2f}s with {len(self.optimization_history)} evaluations")
logger.info(f"Best score: {result['best_score']:.4f}")
return optimization_result
def _grid_search(
self,
parameter_space: Dict[str, List[Any]],
target_metric: str,
max_evaluations: Optional[int] = None
) -> Dict[str, Any]:
"""Exhaustive grid search over parameter space."""
param_names = list(parameter_space.keys())
param_values = list(parameter_space.values())
best_score = float('-inf')
best_params = {}
evaluations = 0
# Generate all parameter combinations
for param_combination in product(*param_values):
if max_evaluations and evaluations >= max_evaluations:
logger.info(f"Reached maximum evaluations limit: {max_evaluations}")
break
# Create parameter dictionary
current_params = dict(zip(param_names, param_combination))
# Evaluate
try:
score = self.evaluation_function(current_params)
evaluations += 1
# Track history
self.optimization_history.append({
"evaluation": evaluations,
"parameters": current_params.copy(),
"score": score,
"is_best": score > best_score
})
# Update best
if score > best_score:
best_score = score
best_params = current_params.copy()
logger.info(f"New best score: {score:.4f} with params: {current_params}")
except Exception as e:
logger.error(f"Evaluation failed for params {current_params}: {e}")
continue
return {
"best_parameters": best_params,
"best_score": best_score,
"convergence_info": {"strategy": "grid_search", "total_combinations": evaluations}
}
def _binary_search(
self,
parameter_space: Dict[str, List[Any]],
target_metric: str,
parameter_name: Optional[str] = None
) -> Dict[str, Any]:
"""Binary search for single parameter optimization."""
if len(parameter_space) != 1 and parameter_name is None:
raise ValueError("Binary search requires exactly one parameter or parameter_name to be specified")
if parameter_name:
if parameter_name not in parameter_space:
raise ValueError(f"Parameter {parameter_name} not found in parameter space")
search_param = parameter_name
other_params = {k: v[0] for k, v in parameter_space.items() if k != parameter_name}
else:
search_param = list(parameter_space.keys())[0]
other_params = {}
search_values = parameter_space[search_param]
if len(search_values) < 3:
logger.warning("Binary search requires at least 3 values, falling back to grid search")
return self._grid_search(parameter_space, target_metric)
# Sort values for binary search
sorted_values = sorted(search_values)
left, right = 0, len(sorted_values) - 1
best_score = float('-inf')
best_params = {}
evaluations = 0
while left <= right:
mid = (left + right) // 2
current_value = sorted_values[mid]
# Create parameter set
current_params = other_params.copy()
current_params[search_param] = current_value
# Evaluate
try:
score = self.evaluation_function(current_params)
evaluations += 1
self.optimization_history.append({
"evaluation": evaluations,
"parameters": current_params.copy(),
"score": score,
"search_bounds": [sorted_values[left], sorted_values[right]],
"is_best": score > best_score
})
if score > best_score:
best_score = score
best_params = current_params.copy()
logger.info(f"Binary search: new best {score:.4f} at {search_param}={current_value}")
# Decide search direction based on neighboring evaluations
if mid > 0:
left_params = other_params.copy()
left_params[search_param] = sorted_values[mid-1]
left_score = self.evaluation_function(left_params)
evaluations += 1
else:
left_score = float('-inf')
if mid < len(sorted_values) - 1:
right_params = other_params.copy()
right_params[search_param] = sorted_values[mid+1]
right_score = self.evaluation_function(right_params)
evaluations += 1
else:
right_score = float('-inf')
# Move towards better direction
if left_score > right_score:
right = mid - 1
else:
left = mid + 1
except Exception as e:
logger.error(f"Binary search evaluation failed: {e}")
break
return {
"best_parameters": best_params,
"best_score": best_score,
"convergence_info": {"strategy": "binary_search", "evaluations": evaluations}
}
def _random_search(
self,
parameter_space: Dict[str, List[Any]],
target_metric: str,
max_evaluations: int = 100,
seed: Optional[int] = None
) -> Dict[str, Any]:
"""Random search over parameter space."""
if seed is not None:
np.random.seed(seed)
param_names = list(parameter_space.keys())
param_values = list(parameter_space.values())
best_score = float('-inf')
best_params = {}
for evaluation in range(max_evaluations):
# Randomly select parameter combination
current_params = {}
for name, values in zip(param_names, param_values):
current_params[name] = np.random.choice(values)
try:
score = self.evaluation_function(current_params)
self.optimization_history.append({
"evaluation": evaluation + 1,
"parameters": current_params.copy(),
"score": score,
"is_best": score > best_score
})
if score > best_score:
best_score = score
best_params = current_params.copy()
logger.info(f"Random search: new best {score:.4f} at evaluation {evaluation + 1}")
except Exception as e:
logger.error(f"Random search evaluation failed: {e}")
continue
return {
"best_parameters": best_params,
"best_score": best_score,
"convergence_info": {"strategy": "random_search", "evaluations": max_evaluations}
}
def _gradient_free_search(
self,
parameter_space: Dict[str, List[Any]],
target_metric: str,
max_evaluations: int = 200,
convergence_threshold: float = 0.001,
population_size: int = 10
) -> Dict[str, Any]:
"""Gradient-free optimization using simple evolutionary approach."""
param_names = list(parameter_space.keys())
param_values = list(parameter_space.values())
# Initialize population
population = []
for _ in range(population_size):
individual = {}
for name, values in zip(param_names, param_values):
individual[name] = np.random.choice(values)
population.append(individual)
best_score = float('-inf')
best_params = {}
generations_without_improvement = 0
generation = 0
while len(self.optimization_history) < max_evaluations:
generation += 1
# Evaluate population
generation_scores = []
for individual in population:
try:
score = self.evaluation_function(individual)
generation_scores.append((individual, score))
self.optimization_history.append({
"evaluation": len(self.optimization_history) + 1,
"generation": generation,
"parameters": individual.copy(),
"score": score,
"is_best": score > best_score
})
if score > best_score:
improvement = score - best_score
best_score = score
best_params = individual.copy()
generations_without_improvement = 0
logger.info(f"Gradient-free: gen {generation}, new best {score:.4f}, improvement {improvement:.4f}")
if len(self.optimization_history) >= max_evaluations:
break
except Exception as e:
logger.error(f"Gradient-free evaluation failed: {e}")
continue
if not generation_scores:
break
# Selection: keep top 50%
generation_scores.sort(key=lambda x: x[1], reverse=True)
survivors = [ind for ind, _ in generation_scores[:population_size//2]]
# Reproduction: create offspring with mutations
new_population = survivors.copy()
while len(new_population) < population_size:
parent = np.random.choice(survivors)
child = parent.copy()
# Mutate random parameter
param_to_mutate = np.random.choice(param_names)
child[param_to_mutate] = np.random.choice(parameter_space[param_to_mutate])
new_population.append(child)
population = new_population
generations_without_improvement += 1
# Check convergence
if generations_without_improvement > 10: # Early stopping
logger.info(f"Gradient-free search converged after {generation} generations")
break
return {
"best_parameters": best_params,
"best_score": best_score,
"convergence_info": {
"strategy": "gradient_free",
"generations": generation,
"final_population_size": len(population),
"converged": generations_without_improvement > 10
}
}
def get_optimization_summary(self) -> str:
"""Get human-readable summary of optimization results."""
if not self.best_result:
return "No optimization completed yet."
result = self.best_result
summary = [
f"Optimization Results Summary",
f"=" * 40,
f"Best Score: {result.best_score:.4f}",
f"Total Evaluations: {result.total_evaluations}",
f"Optimization Time: {result.optimization_time:.2f}s",
f"Evaluations/Second: {result.total_evaluations/result.optimization_time:.2f}",
f"",
f"Best Parameters:"
]
for param, value in result.best_parameters.items():
summary.append(f" {param}: {value}")
if result.convergence_info:
summary.extend([
f"",
f"Convergence Info:",
f" Strategy: {result.convergence_info.get('strategy', 'unknown')}"
])
for key, value in result.convergence_info.items():
if key != 'strategy':
summary.append(f" {key}: {value}")
return "\n".join(summary)
def export_optimization_results(self, output_path: Path) -> None:
"""Export optimization results to JSON."""
if not self.best_result:
logger.error("No optimization results to export")
return
try:
export_data = {
"best_parameters": self.best_result.best_parameters,
"best_score": self.best_result.best_score,
"total_evaluations": self.best_result.total_evaluations,
"optimization_time": self.best_result.optimization_time,
"convergence_info": self.best_result.convergence_info,
"optimization_history": self.best_result.optimization_history
}
with open(output_path, 'w') as f:
json.dump(export_data, f, indent=2, default=str)
logger.info(f"Exported optimization results to {output_path}")
except Exception as e:
logger.error(f"Failed to export optimization results: {e}")
if __name__ == "__main__":
# Test optimization engine with mock evaluation function
def mock_evaluation(params):
"""Mock evaluation function for testing."""
# Simulate optimization of quadratic function
x = params.get("param_x", 0)
y = params.get("param_y", 0)
# Optimal at x=5, y=3
score = 100 - (x - 5)**2 - (y - 3)**2
return max(0, score) # Ensure non-negative
# Test parameter space
param_space = {
"param_x": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
"param_y": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
}
engine = OptimizationEngine(mock_evaluation)
# Test grid search
result = engine.optimize(
param_space,
strategy=OptimizationStrategy.GRID_SEARCH,
max_evaluations=50
)
print(engine.get_optimization_summary())