Arthur Passuello
initial commit
5e1a30c
"""
Base adapter implementation for LLM providers.
This module provides common functionality shared by all LLM adapters,
including error handling, retry logic, and format conversion utilities.
Architecture Notes:
- All LLM-specific logic must be in adapters, not in the orchestrator
- Adapters handle authentication, format conversion, and error mapping
- Each provider's peculiarities are hidden behind the unified interface
"""
import time
import logging
from typing import Dict, Any, Optional, List, Iterator
from abc import abstractmethod
import json
from ..base import LLMAdapter, LLMError, GenerationParams, ConfigurableComponent
logger = logging.getLogger(__name__)
class RateLimitError(LLMError):
"""Rate limit exceeded error."""
pass
class AuthenticationError(LLMError):
"""Authentication failed error."""
pass
class ModelNotFoundError(LLMError):
"""Model not found error."""
pass
class BaseLLMAdapter(LLMAdapter, ConfigurableComponent):
"""
Base implementation for LLM adapters with common functionality.
Provides:
- Retry logic with exponential backoff
- Common error handling and mapping
- Response validation
- Metrics collection
- Configuration management
Subclasses must implement:
- _make_request: Provider-specific API call
- _parse_response: Convert provider response to text
- _get_provider_name: Return provider name
- _validate_model: Check if model exists
"""
def __init__(self,
model_name: str,
config: Optional[Dict[str, Any]] = None,
max_retries: int = 3,
retry_delay: float = 1.0):
"""
Initialize base LLM adapter.
Args:
model_name: Name of the model to use
config: Provider-specific configuration
max_retries: Maximum number of retry attempts
retry_delay: Initial delay between retries (seconds)
"""
super().__init__(config)
self.model_name = model_name
self.max_retries = max_retries
self.retry_delay = retry_delay
self._request_count = 0
self._total_tokens = 0
self._last_request_time = 0
def generate(self, prompt: str, params: GenerationParams) -> str:
"""
Generate a response with retry logic and error handling.
Args:
prompt: The prompt to send to the LLM
params: Generation parameters
Returns:
Generated text response
Raises:
LLMError: If generation fails after retries
"""
if not prompt.strip():
raise ValueError("Prompt cannot be empty")
# Track request timing
start_time = time.time()
self._last_request_time = start_time
# Attempt generation with retries
last_error = None
for attempt in range(self.max_retries):
try:
# Make provider-specific request
response = self._make_request(prompt, params)
# Parse provider response
text = self._parse_response(response)
# Validate response
if not text or not text.strip():
raise LLMError("Empty response from LLM")
# Update metrics
self._request_count += 1
if 'usage' in response:
self._total_tokens += response['usage'].get('total_tokens', 0)
# Log success
elapsed = time.time() - start_time
logger.info(f"{self._get_provider_name()} generation completed in {elapsed:.2f}s")
return text
except RateLimitError as e:
# Rate limit - use exponential backoff
last_error = e
if attempt < self.max_retries - 1:
delay = self.retry_delay * (2 ** attempt)
logger.warning(f"Rate limit hit, retrying in {delay}s...")
time.sleep(delay)
else:
logger.error(f"Rate limit exceeded after {self.max_retries} attempts")
except AuthenticationError as e:
# Authentication errors are not retryable
logger.error(f"Authentication failed: {str(e)}")
raise
except Exception as e:
# Other errors - retry with backoff
last_error = e
if attempt < self.max_retries - 1:
delay = self.retry_delay * (2 ** attempt)
logger.warning(f"Generation failed: {str(e)}, retrying in {delay}s...")
time.sleep(delay)
else:
logger.error(f"Generation failed after {self.max_retries} attempts: {str(e)}")
# All retries exhausted
raise LLMError(f"Generation failed after {self.max_retries} attempts: {str(last_error)}")
def generate_streaming(self, prompt: str, params: GenerationParams) -> Iterator[str]:
"""
Generate a streaming response.
Default implementation calls generate() and yields the result.
Subclasses should override for true streaming support.
Args:
prompt: The prompt to send to the LLM
params: Generation parameters
Yields:
Generated text chunks
"""
# Default: yield full response as single chunk
# Subclasses should override for true streaming
logger.warning(f"{self._get_provider_name()} adapter using simulated streaming")
yield self.generate(prompt, params)
def get_model_info(self) -> Dict[str, Any]:
"""
Get information about the model and provider.
Returns:
Dictionary with model information
"""
return {
'provider': self._get_provider_name(),
'model': self.model_name,
'supports_streaming': self._supports_streaming(),
'max_tokens': self._get_max_tokens(),
'requests_made': self._request_count,
'total_tokens_used': self._total_tokens,
'configuration': self._get_safe_config()
}
def validate_connection(self) -> bool:
"""
Validate the connection to the LLM provider.
Returns:
True if connection is valid
Raises:
LLMError: If connection validation fails
"""
try:
# Validate model exists
if not self._validate_model():
raise ModelNotFoundError(f"Model '{self.model_name}' not found")
# Make a minimal test request
test_prompt = "Hello"
test_params = GenerationParams(max_tokens=10, temperature=0)
response = self.generate(test_prompt, test_params)
return bool(response)
except Exception as e:
logger.error(f"Connection validation failed: {str(e)}")
raise LLMError(f"Failed to validate {self._get_provider_name()} connection: {str(e)}")
# Abstract methods that subclasses must implement
@abstractmethod
def _make_request(self, prompt: str, params: GenerationParams) -> Dict[str, Any]:
"""
Make a request to the LLM provider.
Args:
prompt: The prompt to send
params: Generation parameters
Returns:
Raw response from provider
Raises:
Provider-specific exceptions
"""
pass
@abstractmethod
def _parse_response(self, response: Dict[str, Any]) -> str:
"""
Parse the provider response to extract generated text.
Args:
response: Raw response from provider
Returns:
Generated text
"""
pass
@abstractmethod
def _get_provider_name(self) -> str:
"""Return the provider name (e.g., 'Ollama', 'OpenAI')."""
pass
@abstractmethod
def _validate_model(self) -> bool:
"""Check if the configured model exists/is available."""
pass
# Optional methods that subclasses can override
def _supports_streaming(self) -> bool:
"""Whether this adapter supports true streaming."""
return False
def _get_max_tokens(self) -> Optional[int]:
"""Get maximum token limit for this model."""
return None
def _get_safe_config(self) -> Dict[str, Any]:
"""Get configuration with sensitive data removed."""
safe_config = self.config.copy()
# Remove sensitive keys
sensitive_keys = ['api_key', 'token', 'secret', 'password']
for key in sensitive_keys:
if key in safe_config:
safe_config[key] = '***'
return safe_config
# Utility methods for subclasses
def _handle_provider_error(self, error: Exception) -> None:
"""
Map provider-specific errors to standard errors.
Subclasses should override to handle specific error types.
Args:
error: Provider-specific error
Raises:
Appropriate LLMError subclass
"""
error_msg = str(error).lower()
if 'rate limit' in error_msg or '429' in error_msg:
raise RateLimitError(str(error))
elif 'unauthorized' in error_msg or '401' in error_msg or 'api key' in error_msg:
raise AuthenticationError(str(error))
elif 'not found' in error_msg or '404' in error_msg:
raise ModelNotFoundError(str(error))
else:
raise LLMError(f"Provider error: {str(error)}")
def _prepare_messages(self, prompt: str) -> List[Dict[str, str]]:
"""
Prepare messages in chat format.
Many providers expect chat-style message format.
Args:
prompt: The prompt text
Returns:
List of message dictionaries
"""
return [{"role": "user", "content": prompt}]
def _extract_content(self, message: Dict[str, Any]) -> str:
"""
Extract content from a message object.
Handles various message formats from different providers.
Args:
message: Message object
Returns:
Extracted content string
"""
# Try common content locations
if isinstance(message, str):
return message
elif isinstance(message, dict):
return (message.get('content') or
message.get('text') or
message.get('message') or
str(message))
else:
return str(message)