Arthur Passuello
initial commit
5e1a30c
"""
HuggingFace LLM adapter implementation.
This adapter provides integration with HuggingFace Inference API, handling
the specific API format and response structure of HuggingFace models.
Architecture Notes:
- Converts between unified interface and HuggingFace API format
- Handles both chat completion and text generation endpoints
- Supports automatic model selection and fallback
- Maps HuggingFace errors to standard LLMError types
"""
import os
import logging
import time
from typing import Dict, Any, Optional, List, Iterator
from datetime import datetime
from .base_adapter import BaseLLMAdapter, LLMError, ModelNotFoundError, AuthenticationError, RateLimitError
from ..base import GenerationParams
logger = logging.getLogger(__name__)
# Check for HuggingFace Hub availability
try:
from huggingface_hub import InferenceClient
HF_HUB_AVAILABLE = True
except ImportError:
HF_HUB_AVAILABLE = False
logger.warning("huggingface_hub not available. Install with: pip install huggingface-hub")
class HuggingFaceAdapter(BaseLLMAdapter):
"""
Adapter for HuggingFace Inference API integration.
Features:
- Support for both chat completion and text generation
- Automatic model selection and fallback
- OpenAI-compatible chat completion format
- Comprehensive error handling and retry logic
- Multiple model support with automatic fallback
Configuration:
- api_token: HuggingFace API token (required)
- timeout: Request timeout in seconds (default: 30)
- use_chat_completion: Prefer chat completion over text generation
- fallback_models: List of models to try if primary fails
"""
# Models that work well with chat completion format
CHAT_MODELS = [
"microsoft/DialoGPT-medium", # Proven conversational model
"google/gemma-2-2b-it", # Instruction-tuned, good for Q&A
"meta-llama/Llama-3.2-3B-Instruct", # If available with token
"Qwen/Qwen2.5-1.5B-Instruct", # Small, fast, good quality
]
# Fallback models for classic text generation
CLASSIC_MODELS = [
"google/flan-t5-small", # Good for instructions
"deepset/roberta-base-squad2", # Q&A specific
"facebook/bart-base", # Summarization
]
def __init__(self,
model_name: str = "microsoft/DialoGPT-medium",
api_token: Optional[str] = None,
timeout: int = 30,
use_chat_completion: bool = True,
fallback_models: Optional[List[str]] = None,
config: Optional[Dict[str, Any]] = None):
"""
Initialize HuggingFace adapter.
Args:
model_name: HuggingFace model name
api_token: HuggingFace API token
timeout: Request timeout in seconds
use_chat_completion: Prefer chat completion over text generation
fallback_models: List of fallback models to try
config: Additional configuration
"""
if not HF_HUB_AVAILABLE:
raise ImportError("huggingface_hub is required for HuggingFace adapter. Install with: pip install huggingface-hub")
# Get API token from various sources
self.api_token = (
api_token or
os.getenv("HUGGINGFACE_API_TOKEN") or
os.getenv("HF_TOKEN") or
os.getenv("HF_API_TOKEN")
)
if not self.api_token:
raise AuthenticationError("HuggingFace API token required. Set HF_TOKEN environment variable or pass api_token parameter.")
# Merge configuration
adapter_config = {
'api_token': self.api_token,
'timeout': timeout,
'use_chat_completion': use_chat_completion,
'fallback_models': fallback_models or [],
**(config or {})
}
super().__init__(model_name, adapter_config)
self.timeout = adapter_config['timeout']
self.use_chat_completion = adapter_config['use_chat_completion']
self.fallback_models = adapter_config['fallback_models']
# Initialize client
self.client = InferenceClient(token=self.api_token)
# Test connection and determine best model (only if not using dummy token)
if not self.api_token.startswith("dummy_"):
self._test_connection()
else:
logger.info("Using dummy token, skipping connection test")
logger.info(f"Initialized HuggingFace adapter for model '{self.model_name}' (chat_completion: {self.use_chat_completion})")
def _make_request(self, prompt: str, params: GenerationParams) -> Dict[str, Any]:
"""
Make a request to HuggingFace API.
Args:
prompt: The prompt to send
params: Generation parameters
Returns:
HuggingFace API response
Raises:
Various request exceptions
"""
try:
if self.use_chat_completion:
return self._make_chat_completion_request(prompt, params)
else:
return self._make_text_generation_request(prompt, params)
except Exception as e:
# Try fallback models if primary fails
for fallback_model in self.fallback_models:
try:
logger.info(f"Trying fallback model: {fallback_model}")
original_model = self.model_name
self.model_name = fallback_model
if self.use_chat_completion:
result = self._make_chat_completion_request(prompt, params)
else:
result = self._make_text_generation_request(prompt, params)
# Success with fallback
logger.info(f"Successfully used fallback model: {fallback_model}")
return result
except Exception as fallback_error:
logger.warning(f"Fallback model {fallback_model} failed: {fallback_error}")
# Restore original model name
self.model_name = original_model
continue
# All models failed
self._handle_provider_error(e)
def _make_chat_completion_request(self, prompt: str, params: GenerationParams) -> Dict[str, Any]:
"""Make a chat completion request."""
messages = [{"role": "user", "content": prompt}]
try:
response = self.client.chat_completion(
messages=messages,
model=self.model_name,
temperature=params.temperature,
max_tokens=params.max_tokens,
stream=False
)
# Extract content from response
if hasattr(response, 'choices') and response.choices:
content = response.choices[0].message.content
return {
'content': content,
'model': self.model_name,
'usage': getattr(response, 'usage', {}),
'response_type': 'chat_completion'
}
else:
# Handle different response formats
if hasattr(response, 'generated_text'):
content = response.generated_text
else:
content = str(response)
return {
'content': content,
'model': self.model_name,
'usage': {},
'response_type': 'chat_completion'
}
except Exception as e:
logger.error(f"Chat completion failed: {e}")
raise
def _make_text_generation_request(self, prompt: str, params: GenerationParams) -> Dict[str, Any]:
"""Make a text generation request."""
try:
response = self.client.text_generation(
model=self.model_name,
prompt=prompt,
max_new_tokens=params.max_tokens,
temperature=params.temperature,
do_sample=params.temperature > 0,
top_p=params.top_p,
stop_sequences=params.stop_sequences
)
# Handle response format
if isinstance(response, str):
content = response
else:
content = getattr(response, 'generated_text', str(response))
return {
'content': content,
'model': self.model_name,
'usage': {},
'response_type': 'text_generation'
}
except Exception as e:
logger.error(f"Text generation failed: {e}")
raise
def _parse_response(self, response: Dict[str, Any]) -> str:
"""
Parse HuggingFace response to extract generated text.
Args:
response: HuggingFace API response
Returns:
Generated text
"""
content = response.get('content', '')
# Log usage if available
if 'usage' in response and response['usage']:
usage = response['usage']
total_tokens = usage.get('total_tokens', 0)
if total_tokens > 0:
logger.debug(f"HuggingFace used {total_tokens} tokens for generation")
return content
def generate_streaming(self, prompt: str, params: GenerationParams) -> Iterator[str]:
"""
Generate a streaming response from HuggingFace.
Args:
prompt: The prompt to send
params: Generation parameters
Yields:
Generated text chunks
"""
try:
if self.use_chat_completion:
# Try streaming chat completion
messages = [{"role": "user", "content": prompt}]
response = self.client.chat_completion(
messages=messages,
model=self.model_name,
temperature=params.temperature,
max_tokens=params.max_tokens,
stream=True
)
for chunk in response:
if hasattr(chunk, 'choices') and chunk.choices:
delta = chunk.choices[0].delta
if hasattr(delta, 'content') and delta.content:
yield delta.content
else:
# Fallback to non-streaming for text generation
logger.warning("Streaming not supported for text generation, falling back to non-streaming")
yield self.generate(prompt, params)
except Exception as e:
logger.error(f"Streaming generation failed: {e}")
# Fallback to non-streaming
yield self.generate(prompt, params)
def _get_provider_name(self) -> str:
"""Return the provider name."""
return "HuggingFace"
def _validate_model(self) -> bool:
"""Check if the model exists in HuggingFace."""
try:
# Try a simple test request
test_prompt = "Hello"
if self.use_chat_completion:
test_messages = [{"role": "user", "content": test_prompt}]
response = self.client.chat_completion(
messages=test_messages,
model=self.model_name,
max_tokens=10,
temperature=0.1
)
else:
response = self.client.text_generation(
model=self.model_name,
prompt=test_prompt,
max_new_tokens=10
)
return bool(response)
except Exception as e:
logger.warning(f"Model validation failed: {e}")
return False
def _supports_streaming(self) -> bool:
"""HuggingFace supports streaming for chat completion."""
return self.use_chat_completion
def _get_max_tokens(self) -> Optional[int]:
"""Get max tokens for current model."""
# Model-specific limits (approximate)
model_limits = {
'microsoft/DialoGPT-medium': 1024,
'google/gemma-2-2b-it': 8192,
'meta-llama/Llama-3.2-3B-Instruct': 4096,
'Qwen/Qwen2.5-1.5B-Instruct': 32768,
'google/flan-t5-small': 512,
'deepset/roberta-base-squad2': 512,
'facebook/bart-base': 1024,
}
# Check for exact match
if self.model_name in model_limits:
return model_limits[self.model_name]
# Check for partial match
for model_prefix, limit in model_limits.items():
if model_prefix in self.model_name:
return limit
# Default for unknown models
return 1024
def _test_connection(self) -> None:
"""Test the connection and find the best working model."""
logger.info("Testing HuggingFace API connection...")
# Test primary model first
if self._validate_model():
logger.info(f"Primary model {self.model_name} is working")
return
# Try chat models if using chat completion
if self.use_chat_completion:
for model in self.CHAT_MODELS:
if model != self.model_name:
try:
logger.info(f"Testing chat model: {model}")
original_model = self.model_name
self.model_name = model
if self._validate_model():
logger.info(f"Found working chat model: {model}")
return
# Restore original if failed
self.model_name = original_model
except Exception as e:
logger.warning(f"Chat model {model} failed: {e}")
continue
# Try classic models as fallback
logger.info("Trying classic text generation models...")
for model in self.CLASSIC_MODELS:
try:
logger.info(f"Testing classic model: {model}")
original_model = self.model_name
original_chat = self.use_chat_completion
self.model_name = model
self.use_chat_completion = False
if self._validate_model():
logger.info(f"Found working classic model: {model}")
return
# Restore original settings if failed
self.model_name = original_model
self.use_chat_completion = original_chat
except Exception as e:
logger.warning(f"Classic model {model} failed: {e}")
continue
# If we get here, no models worked
raise ModelNotFoundError(f"No working models found. Original model '{self.model_name}' is not accessible.")
def _handle_provider_error(self, error: Exception) -> None:
"""Map HuggingFace-specific errors to standard errors."""
error_msg = str(error).lower()
if 'rate limit' in error_msg or '429' in error_msg:
raise RateLimitError(f"HuggingFace rate limit exceeded: {error}")
elif 'unauthorized' in error_msg or '401' in error_msg or 'token' in error_msg:
raise AuthenticationError(f"HuggingFace authentication failed: {error}")
elif 'not found' in error_msg or '404' in error_msg:
raise ModelNotFoundError(f"HuggingFace model not found: {error}")
elif 'timeout' in error_msg:
raise LLMError(f"HuggingFace request timed out: {error}")
elif 'connection' in error_msg:
raise LLMError(f"Failed to connect to HuggingFace API: {error}")
else:
raise LLMError(f"HuggingFace API error: {error}")