Arthur Passuello
Fixed config issue
3de5636
"""
Configuration management system for the modular RAG pipeline.
This module provides a type-safe configuration system using Pydantic
for validation and YAML for storage. It supports multiple environments,
configuration inheritance, and ComponentFactory validation.
"""
from typing import Dict, Any, Optional, List
import yaml
import time
import hashlib
from pathlib import Path
from pydantic import BaseModel, Field, field_validator, ConfigDict, model_validator
from collections import OrderedDict
import os
class ComponentConfig(BaseModel):
"""Configuration for a single component.
Attributes:
type: Component type identifier (e.g., 'hybrid_pdf', 'sentence_transformer')
config: Component-specific configuration parameters
"""
type: str
config: Dict[str, Any] = Field(default_factory=dict)
@field_validator('type')
@classmethod
def validate_type(cls, v):
"""Ensure type is not empty."""
if not v or not v.strip():
raise ValueError("Component type cannot be empty")
return v.strip()
class PipelineConfig(BaseModel):
"""Complete pipeline configuration.
Defines all components needed for a functional RAG pipeline.
Supports both legacy (Phase 1) and unified (Phase 2) architectures.
Includes ComponentFactory validation for Phase 3.
"""
document_processor: ComponentConfig
embedder: ComponentConfig
vector_store: Optional[ComponentConfig] = None # Optional in Phase 2 unified architecture
retriever: ComponentConfig
answer_generator: ComponentConfig
# Optional global settings
global_settings: Dict[str, Any] = Field(default_factory=dict)
model_config = ConfigDict(extra='forbid') # Prevent unknown fields
@model_validator(mode='after')
def validate_component_types(self):
"""Validate component types using ComponentFactory."""
# Import here to avoid circular imports
try:
from .component_factory import ComponentFactory
# Create configuration dict for factory validation
config_dict = {
'document_processor': {
'type': self.document_processor.type,
'config': self.document_processor.config
},
'embedder': {
'type': self.embedder.type,
'config': self.embedder.config
},
'retriever': {
'type': self.retriever.type,
'config': self.retriever.config
},
'answer_generator': {
'type': self.answer_generator.type,
'config': self.answer_generator.config
}
}
# Add vector_store if present (optional for unified architecture)
if self.vector_store is not None:
config_dict['vector_store'] = {
'type': self.vector_store.type,
'config': self.vector_store.config
}
# Use factory validation
errors = ComponentFactory.validate_configuration(config_dict)
if errors:
error_message = "Component validation failed:\n" + "\n".join(f" - {error}" for error in errors)
raise ValueError(error_message)
except ImportError:
# ComponentFactory not available - skip validation
# This allows config to work during early development
pass
return self
@model_validator(mode='after')
def validate_architecture_consistency(self):
"""Validate architecture consistency (legacy vs unified)."""
retriever_type = self.retriever.type
has_vector_store = self.vector_store is not None
if retriever_type == "unified":
# Unified architecture - vector_store should be None
if has_vector_store:
raise ValueError(
"Unified retriever architecture detected, but vector_store is configured. "
"For unified architecture, remove the vector_store section - "
"the retriever handles vector storage internally."
)
elif retriever_type == "hybrid":
# Legacy architecture - vector_store is required
if not has_vector_store:
raise ValueError(
"Legacy hybrid retriever architecture detected, but vector_store is missing. "
"For legacy architecture, configure a vector_store section, "
"or switch to 'unified' retriever type."
)
return self
class ConfigManager:
"""Manages configuration loading, validation, and environment handling.
Supports:
- Loading from YAML files
- Environment variable overrides
- Configuration inheritance
- Validation using Pydantic
"""
def __init__(self, config_path: Optional[Path] = None, env: Optional[str] = None):
"""Initialize configuration manager.
Args:
config_path: Path to configuration file
env: Environment name (e.g., 'dev', 'test', 'prod')
"""
self.config_path = config_path
self.env = env or os.getenv('RAG_ENV', 'default')
self._config: Optional[PipelineConfig] = None
self._raw_config: Optional[Dict[str, Any]] = None
# Phase 4: Configuration caching
self._config_cache: OrderedDict[str, Dict[str, Any]] = OrderedDict()
self._cache_max_size: int = 5 # Max cached configurations
self._file_timestamps: Dict[str, float] = {} # Track file modifications
def load(self) -> PipelineConfig:
"""Load and validate configuration.
Returns:
Validated pipeline configuration
Raises:
FileNotFoundError: If config file doesn't exist
ValueError: If configuration is invalid
"""
if self.config_path and self.config_path.exists():
return self._load_from_file(self.config_path)
# Try to find config based on environment
config_dir = Path(__file__).parent.parent.parent / "config"
env_config = config_dir / f"{self.env}.yaml"
if env_config.exists():
return self._load_from_file(env_config)
# Fall back to default config
default_config = config_dir / "default.yaml"
if default_config.exists():
return self._load_from_file(default_config)
# If no config file found, return a minimal default
return self._get_default_config()
def _load_from_file(self, path: Path) -> PipelineConfig:
"""Load configuration from YAML file with caching.
Args:
path: Path to YAML file
Returns:
Validated configuration
"""
# Phase 4: Check cache first
cache_key = self._get_cache_key(path)
if self._is_cache_valid(path, cache_key):
cached_data = self._config_cache[cache_key]
self._raw_config = cached_data.copy()
# Apply environment variable overrides (not cached due to dynamic nature)
data = self._apply_env_overrides(cached_data.copy())
# Apply environment variable substitution
data = self._substitute_env_vars(data)
return PipelineConfig(**data)
# Load from file
with open(path, 'r') as f:
data = yaml.safe_load(f)
self._raw_config = data
# Cache the raw data
self._add_to_cache(path, cache_key, data.copy())
# Apply environment variable overrides
data = self._apply_env_overrides(data)
# Apply environment variable substitution
data = self._substitute_env_vars(data)
# Validate and return
return PipelineConfig(**data)
def _apply_env_overrides(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""Apply environment variable overrides to configuration.
Environment variables should be prefixed with RAG_ and use
double underscores for nesting. For example:
RAG_EMBEDDER__CONFIG__MODEL_NAME=all-MiniLM-L6-v2
Args:
config: Base configuration dictionary
Returns:
Configuration with overrides applied
"""
import copy
config = copy.deepcopy(config)
for key, value in os.environ.items():
if key.startswith('RAG_') and key not in ('RAG_ENV', 'RAG_CONFIG'):
# Remove prefix and split by double underscore
path_parts = key[4:].lower().split('__')
# Navigate to the correct position in config
current = config
for i, part in enumerate(path_parts[:-1]):
if part not in current:
current[part] = {}
current = current[part]
# Set the value
final_key = path_parts[-1]
# Try to parse as JSON for complex types
try:
import json
current[final_key] = json.loads(value)
except:
# If not JSON, treat as string
# Convert 'true'/'false' to boolean
if value.lower() == 'true':
current[final_key] = True
elif value.lower() == 'false':
current[final_key] = False
else:
current[final_key] = value
return config
def _substitute_env_vars(self, config: Dict[str, Any]) -> Dict[str, Any]:
"""Substitute environment variables in configuration values.
Supports ${VAR} syntax for environment variable substitution.
Args:
config: Configuration dictionary
Returns:
Configuration with environment variables substituted
"""
import re
def substitute_recursive(obj):
if isinstance(obj, dict):
return {k: substitute_recursive(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [substitute_recursive(item) for item in obj]
elif isinstance(obj, str):
# Replace ${VAR} with environment variable
def replace_var(match):
var_name = match.group(1)
return os.environ.get(var_name, match.group(0))
return re.sub(r'\$\{([^}]+)\}', replace_var, obj)
else:
return obj
return substitute_recursive(config)
def _get_default_config(self) -> PipelineConfig:
"""Return a minimal default configuration.
This is used when no configuration files are found.
"""
return PipelineConfig(
document_processor=ComponentConfig(
type="hybrid_pdf",
config={
"chunk_size": 1024,
"chunk_overlap": 128
}
),
embedder=ComponentConfig(
type="sentence_transformer",
config={
"model_name": "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
"use_mps": True
}
),
vector_store=ComponentConfig(
type="faiss",
config={
"index_type": "IndexFlatIP",
"normalize": True
}
),
retriever=ComponentConfig(
type="hybrid",
config={
"dense_weight": 0.7,
"sparse_weight": 0.3,
"top_k": 5
}
),
answer_generator=ComponentConfig(
type="adaptive",
config={
"enable_adaptive_prompts": True,
"enable_chain_of_thought": False,
"confidence_threshold": 0.85,
"max_tokens": 512
}
)
)
@property
def config(self) -> PipelineConfig:
"""Get the loaded configuration (lazy loading).
Returns:
Pipeline configuration
"""
if self._config is None:
self._config = self.load()
return self._config
def save(self, path: Path) -> None:
"""Save current configuration to YAML file.
Args:
path: Path to save configuration
"""
config_dict = self.config.model_dump()
with open(path, 'w') as f:
yaml.dump(config_dict, f, default_flow_style=False, sort_keys=False)
def _get_cache_key(self, file_path: Path) -> str:
"""Generate cache key for configuration file.
Args:
file_path: Path to configuration file
Returns:
Cache key string
"""
key_material = f"{file_path}:{self.env}"
return hashlib.md5(key_material.encode()).hexdigest()[:16]
def _is_cache_valid(self, file_path: Path, cache_key: str) -> bool:
"""Check if cached configuration is still valid.
Args:
file_path: Path to configuration file
cache_key: Cache key
Returns:
True if cache is valid
"""
if cache_key not in self._config_cache:
return False
try:
current_mtime = file_path.stat().st_mtime
cached_mtime = self._file_timestamps.get(str(file_path), 0)
return current_mtime <= cached_mtime
except OSError:
return False
def _add_to_cache(self, file_path: Path, cache_key: str, data: Dict[str, Any]) -> None:
"""Add configuration to cache.
Args:
file_path: Path to configuration file
cache_key: Cache key
data: Configuration data
"""
# Remove oldest if at capacity
if len(self._config_cache) >= self._cache_max_size:
oldest_key = next(iter(self._config_cache))
del self._config_cache[oldest_key]
self._config_cache[cache_key] = data
self._file_timestamps[str(file_path)] = file_path.stat().st_mtime
def clear_cache(self) -> None:
"""Clear configuration cache."""
self._config_cache.clear()
self._file_timestamps.clear()
def get_cache_stats(self) -> Dict[str, Any]:
"""Get configuration cache statistics.
Returns:
Dictionary with cache statistics
"""
return {
"cache_size": len(self._config_cache),
"max_size": self._cache_max_size,
"cached_files": list(self._file_timestamps.keys())
}
def get_component_config(self, component_name: str) -> ComponentConfig:
"""Get configuration for a specific component.
Args:
component_name: Name of the component
Returns:
Component configuration
Raises:
AttributeError: If component doesn't exist
"""
return getattr(self.config, component_name)
def validate(self) -> bool:
"""Validate the current configuration.
Returns:
True if valid
Raises:
ValueError: If configuration is invalid
"""
try:
_ = self.config
return True
except Exception as e:
raise ValueError(f"Invalid configuration: {e}")
# Utility functions
def load_config(path: Optional[Path] = None, env: Optional[str] = None) -> PipelineConfig:
"""Convenience function to load configuration.
Args:
path: Optional path to config file
env: Optional environment name
Returns:
Loaded configuration
"""
manager = ConfigManager(path, env)
return manager.config
def create_default_config(output_path: Path) -> None:
"""Create a default configuration file.
Args:
output_path: Path to save the default config
"""
manager = ConfigManager()
default_config = manager._get_default_config()
config_dict = default_config.model_dump()
# Add helpful comments
config_with_comments = f"""# RAG Pipeline Configuration
# This file defines the components and settings for the RAG pipeline
# Document processor for handling input files
document_processor:
type: "{config_dict['document_processor']['type']}" # Options: hybrid_pdf, simple_pdf
config:
chunk_size: {config_dict['document_processor']['config']['chunk_size']}
chunk_overlap: {config_dict['document_processor']['config']['chunk_overlap']}
# Embedding generator for converting text to vectors
embedder:
type: "{config_dict['embedder']['type']}" # Options: sentence_transformer, openai
config:
model_name: "{config_dict['embedder']['config']['model_name']}"
use_mps: {str(config_dict['embedder']['config']['use_mps']).lower()}
# Vector storage backend
vector_store:
type: "{config_dict['vector_store']['type']}" # Options: faiss, chroma, pinecone
config:
index_type: "{config_dict['vector_store']['config']['index_type']}"
normalize: {str(config_dict['vector_store']['config']['normalize']).lower()}
# Retrieval strategy
retriever:
type: "{config_dict['retriever']['type']}" # Options: hybrid, semantic, bm25
config:
dense_weight: {config_dict['retriever']['config']['dense_weight']}
sparse_weight: {config_dict['retriever']['config']['sparse_weight']}
top_k: {config_dict['retriever']['config']['top_k']}
# Answer generation strategy
answer_generator:
type: "{config_dict['answer_generator']['type']}" # Options: adaptive, simple, chain_of_thought
config:
enable_adaptive_prompts: {str(config_dict['answer_generator']['config']['enable_adaptive_prompts']).lower()}
enable_chain_of_thought: {str(config_dict['answer_generator']['config']['enable_chain_of_thought']).lower()}
confidence_threshold: {config_dict['answer_generator']['config']['confidence_threshold']}
max_tokens: {config_dict['answer_generator']['config']['max_tokens']}
# Global settings (optional)
global_settings: {{}}
"""
output_path.parent.mkdir(parents=True, exist_ok=True)
with open(output_path, 'w') as f:
f.write(config_with_comments)