""" Vocabulary index for corpus-aware query enhancement. Tracks all unique terms in the document corpus to enable intelligent synonym expansion that only adds terms actually present in documents. """ from typing import Set, Dict, List, Optional from collections import defaultdict import re from pathlib import Path import json class VocabularyIndex: """ Maintains vocabulary statistics for intelligent query enhancement. Features: - Tracks all unique terms in document corpus - Stores term frequencies for relevance weighting - Identifies technical terms and domain vocabulary - Enables vocabulary-aware synonym expansion Performance: - Build time: ~1s per 1000 chunks - Memory: ~3MB for 80K unique terms - Lookup: O(1) set operations """ def __init__(self): """Initialize empty vocabulary index.""" self.vocabulary: Set[str] = set() self.term_frequencies: Dict[str, int] = defaultdict(int) self.technical_terms: Set[str] = set() self.document_frequencies: Dict[str, int] = defaultdict(int) self.total_documents = 0 self.total_terms = 0 # Regex for term extraction self._term_pattern = re.compile(r'\b[a-zA-Z][a-zA-Z0-9\-_]*\b') self._technical_pattern = re.compile(r'\b[A-Z]{2,}|[a-zA-Z]+[\-_][a-zA-Z]+|\b\d+[a-zA-Z]+\b') def build_from_chunks(self, chunks: List[Dict]) -> None: """ Build vocabulary index from document chunks. Args: chunks: List of document chunks with 'text' field Performance: ~1s per 1000 chunks """ self.total_documents = len(chunks) for chunk in chunks: text = chunk.get('text', '') # Extract and process terms terms = self._extract_terms(text) unique_terms = set(terms) # Update vocabulary self.vocabulary.update(unique_terms) # Update frequencies for term in terms: self.term_frequencies[term] += 1 self.total_terms += 1 # Update document frequencies for term in unique_terms: self.document_frequencies[term] += 1 # Identify technical terms technical = self._extract_technical_terms(text) self.technical_terms.update(technical) def _extract_terms(self, text: str) -> List[str]: """Extract normalized terms from text.""" # Convert to lowercase and extract words text_lower = text.lower() terms = self._term_pattern.findall(text_lower) # Filter short terms return [term for term in terms if len(term) > 2] def _extract_technical_terms(self, text: str) -> Set[str]: """Extract technical terms (acronyms, hyphenated, etc).""" technical = set() # Find potential technical terms matches = self._technical_pattern.findall(text) for match in matches: # Normalize but preserve technical nature normalized = match.lower() if len(normalized) > 2: technical.add(normalized) return technical def contains(self, term: str) -> bool: """Check if term exists in vocabulary.""" return term.lower() in self.vocabulary def get_frequency(self, term: str) -> int: """Get term frequency in corpus.""" return self.term_frequencies.get(term.lower(), 0) def get_document_frequency(self, term: str) -> int: """Get number of documents containing term.""" return self.document_frequencies.get(term.lower(), 0) def is_common_term(self, term: str, min_frequency: int = 5) -> bool: """Check if term appears frequently enough.""" return self.get_frequency(term) >= min_frequency def is_technical_term(self, term: str) -> bool: """Check if term is identified as technical.""" return term.lower() in self.technical_terms def filter_synonyms(self, synonyms: List[str], min_frequency: int = 3, require_technical: bool = False) -> List[str]: """ Filter synonym list to only include terms in vocabulary. Args: synonyms: List of potential synonyms min_frequency: Minimum term frequency required require_technical: Only include technical terms Returns: Filtered list of valid synonyms """ valid_synonyms = [] for synonym in synonyms: # Check existence if not self.contains(synonym): continue # Check frequency threshold if self.get_frequency(synonym) < min_frequency: continue # Check technical requirement if require_technical and not self.is_technical_term(synonym): continue valid_synonyms.append(synonym) return valid_synonyms def get_vocabulary_stats(self) -> Dict[str, any]: """Get comprehensive vocabulary statistics.""" return { 'unique_terms': len(self.vocabulary), 'total_terms': self.total_terms, 'technical_terms': len(self.technical_terms), 'total_documents': self.total_documents, 'avg_terms_per_doc': self.total_terms / self.total_documents if self.total_documents > 0 else 0, 'vocabulary_richness': len(self.vocabulary) / self.total_terms if self.total_terms > 0 else 0, 'technical_ratio': len(self.technical_terms) / len(self.vocabulary) if self.vocabulary else 0 } def get_top_terms(self, n: int = 100, technical_only: bool = False) -> List[tuple]: """ Get most frequent terms in corpus. Args: n: Number of top terms to return technical_only: Only return technical terms Returns: List of (term, frequency) tuples """ if technical_only: term_freq = { term: freq for term, freq in self.term_frequencies.items() if term in self.technical_terms } else: term_freq = self.term_frequencies return sorted(term_freq.items(), key=lambda x: x[1], reverse=True)[:n] def detect_domain(self) -> str: """ Detect document domain from vocabulary patterns. Returns: Detected domain name """ # Domain detection heuristics domain_indicators = { 'embedded_systems': ['microcontroller', 'rtos', 'embedded', 'firmware', 'mcu'], 'processor_architecture': ['risc-v', 'riscv', 'instruction', 'register', 'isa'], 'regulatory': ['fda', 'validation', 'compliance', 'regulation', 'guidance'], 'ai_ml': ['model', 'training', 'neural', 'algorithm', 'machine learning'], 'software_engineering': ['software', 'development', 'testing', 'debugging', 'code'] } domain_scores = {} for domain, indicators in domain_indicators.items(): score = sum( self.get_document_frequency(indicator) for indicator in indicators if self.contains(indicator) ) domain_scores[domain] = score # Return domain with highest score if domain_scores: return max(domain_scores, key=domain_scores.get) return 'general' def save_to_file(self, path: Path) -> None: """Save vocabulary index to JSON file.""" data = { 'vocabulary': list(self.vocabulary), 'term_frequencies': dict(self.term_frequencies), 'technical_terms': list(self.technical_terms), 'document_frequencies': dict(self.document_frequencies), 'total_documents': self.total_documents, 'total_terms': self.total_terms } with open(path, 'w') as f: json.dump(data, f, indent=2) def load_from_file(self, path: Path) -> None: """Load vocabulary index from JSON file.""" with open(path, 'r') as f: data = json.load(f) self.vocabulary = set(data['vocabulary']) self.term_frequencies = defaultdict(int, data['term_frequencies']) self.technical_terms = set(data['technical_terms']) self.document_frequencies = defaultdict(int, data['document_frequencies']) self.total_documents = data['total_documents'] self.total_terms = data['total_terms'] def merge_with(self, other: 'VocabularyIndex') -> None: """Merge another vocabulary index into this one.""" # Merge vocabularies self.vocabulary.update(other.vocabulary) self.technical_terms.update(other.technical_terms) # Merge frequencies for term, freq in other.term_frequencies.items(): self.term_frequencies[term] += freq for term, doc_freq in other.document_frequencies.items(): self.document_frequencies[term] += doc_freq # Update totals self.total_documents += other.total_documents self.total_terms += other.total_terms