""" Weaviate backend configuration schema. This module provides configuration classes for the Weaviate backend adapter, including connection settings, schema definitions, and search parameters. """ from dataclasses import dataclass, field from typing import Dict, Any, Optional, List from pathlib import Path @dataclass class WeaviateConnectionConfig: """Configuration for Weaviate connection.""" url: str = "http://localhost:8080" api_key: Optional[str] = None timeout: int = 30 startup_period: int = 5 additional_headers: Dict[str, str] = field(default_factory=dict) def __post_init__(self): """Validate connection configuration.""" if not self.url: raise ValueError("Weaviate URL cannot be empty") if self.timeout <= 0: raise ValueError("Timeout must be positive") if self.startup_period < 0: raise ValueError("Startup period cannot be negative") @dataclass class WeaviateSchemaConfig: """Configuration for Weaviate schema.""" class_name: str = "TechnicalDocument" description: str = "Technical documentation chunks with embeddings" vector_index_config: Dict[str, Any] = field(default_factory=lambda: { "distance": "cosine", "ef": 64, "efConstruction": 128, "maxConnections": 64 }) properties: List[Dict[str, Any]] = field(default_factory=lambda: [ { "name": "content", "dataType": ["text"], "description": "The main text content of the document chunk" }, { "name": "source_file", "dataType": ["text"], "description": "Original source file path" }, { "name": "chunk_index", "dataType": ["int"], "description": "Index of this chunk within the source document" }, { "name": "page_number", "dataType": ["int"], "description": "Page number in the original document" }, { "name": "chunk_size", "dataType": ["int"], "description": "Size of the chunk in characters" }, { "name": "created_at", "dataType": ["date"], "description": "When this chunk was processed" } ]) def __post_init__(self): """Validate schema configuration.""" if not self.class_name: raise ValueError("Class name cannot be empty") if not self.class_name.isalnum(): raise ValueError("Class name must be alphanumeric") if not self.properties: raise ValueError("Properties list cannot be empty") @dataclass class WeaviateSearchConfig: """Configuration for Weaviate search operations.""" hybrid_search_enabled: bool = True alpha: float = 0.7 # Balance between vector and keyword search (0=keyword, 1=vector) fusion_type: str = "rankedFusion" # or "relativeScoreFusion" limit: int = 100 offset: int = 0 autocut: int = 1 # Enable autocut certainty_threshold: float = 0.7 distance_threshold: Optional[float] = None def __post_init__(self): """Validate search configuration.""" if not 0 <= self.alpha <= 1: raise ValueError("Alpha must be between 0 and 1") if self.limit <= 0: raise ValueError("Limit must be positive") if self.offset < 0: raise ValueError("Offset cannot be negative") if not 0 <= self.certainty_threshold <= 1: raise ValueError("Certainty threshold must be between 0 and 1") if self.distance_threshold is not None and self.distance_threshold < 0: raise ValueError("Distance threshold cannot be negative") @dataclass class WeaviateBatchConfig: """Configuration for Weaviate batch operations.""" batch_size: int = 100 num_workers: int = 1 connection_error_retries: int = 3 timeout_retries: int = 3 callback_period: int = 1000 dynamic_batch_size: bool = True min_batch_size: int = 10 max_batch_size: int = 1000 def __post_init__(self): """Validate batch configuration.""" if self.batch_size <= 0: raise ValueError("Batch size must be positive") if self.num_workers <= 0: raise ValueError("Number of workers must be positive") if self.connection_error_retries < 0: raise ValueError("Connection error retries cannot be negative") if self.timeout_retries < 0: raise ValueError("Timeout retries cannot be negative") if self.min_batch_size <= 0: raise ValueError("Min batch size must be positive") if self.max_batch_size < self.min_batch_size: raise ValueError("Max batch size must be >= min batch size") @dataclass class WeaviateBackendConfig: """Complete configuration for Weaviate backend.""" connection: WeaviateConnectionConfig = field(default_factory=WeaviateConnectionConfig) schema: WeaviateSchemaConfig = field(default_factory=WeaviateSchemaConfig) search: WeaviateSearchConfig = field(default_factory=WeaviateSearchConfig) batch: WeaviateBatchConfig = field(default_factory=WeaviateBatchConfig) # Backend-specific settings auto_create_schema: bool = True enable_backup: bool = True backup_interval_hours: int = 24 max_retries: int = 3 retry_delay_seconds: float = 1.0 def __post_init__(self): """Validate complete backend configuration.""" if self.max_retries < 0: raise ValueError("Max retries cannot be negative") if self.retry_delay_seconds < 0: raise ValueError("Retry delay cannot be negative") if self.backup_interval_hours <= 0: raise ValueError("Backup interval must be positive") @classmethod def from_dict(cls, config_dict: Dict[str, Any]) -> 'WeaviateBackendConfig': """Create configuration from dictionary.""" connection_config = WeaviateConnectionConfig(**config_dict.get('connection', {})) schema_config = WeaviateSchemaConfig(**config_dict.get('schema', {})) search_config = WeaviateSearchConfig(**config_dict.get('search', {})) batch_config = WeaviateBatchConfig(**config_dict.get('batch', {})) # Extract backend-specific settings backend_settings = { k: v for k, v in config_dict.items() if k not in ['connection', 'schema', 'search', 'batch'] } return cls( connection=connection_config, schema=schema_config, search=search_config, batch=batch_config, **backend_settings ) def to_dict(self) -> Dict[str, Any]: """Convert configuration to dictionary.""" return { 'connection': { 'url': self.connection.url, 'api_key': self.connection.api_key, 'timeout': self.connection.timeout, 'startup_period': self.connection.startup_period, 'additional_headers': self.connection.additional_headers }, 'schema': { 'class_name': self.schema.class_name, 'description': self.schema.description, 'vector_index_config': self.schema.vector_index_config, 'properties': self.schema.properties }, 'search': { 'hybrid_search_enabled': self.search.hybrid_search_enabled, 'alpha': self.search.alpha, 'fusion_type': self.search.fusion_type, 'limit': self.search.limit, 'offset': self.search.offset, 'autocut': self.search.autocut, 'certainty_threshold': self.search.certainty_threshold, 'distance_threshold': self.search.distance_threshold }, 'batch': { 'batch_size': self.batch.batch_size, 'num_workers': self.batch.num_workers, 'connection_error_retries': self.batch.connection_error_retries, 'timeout_retries': self.batch.timeout_retries, 'callback_period': self.batch.callback_period, 'dynamic_batch_size': self.batch.dynamic_batch_size, 'min_batch_size': self.batch.min_batch_size, 'max_batch_size': self.batch.max_batch_size }, 'auto_create_schema': self.auto_create_schema, 'enable_backup': self.enable_backup, 'backup_interval_hours': self.backup_interval_hours, 'max_retries': self.max_retries, 'retry_delay_seconds': self.retry_delay_seconds }