Spaces:
Running
Running
File size: 17,207 Bytes
9f5e57c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
"""
Confidence calibration framework for RAG systems based on research best practices.
Implements Expected Calibration Error (ECE), Adaptive Calibration Error (ACE),
temperature scaling, and reliability diagrams for proper confidence calibration.
References:
- Guo et al. "On Calibration of Modern Neural Networks" (2017)
- Kumar et al. "Verified Uncertainty Calibration" (2019)
- RAG-specific calibration research (2024)
"""
import numpy as np
import matplotlib.pyplot as plt
from typing import List, Dict, Tuple, Optional, Any
from dataclasses import dataclass
from sklearn.calibration import calibration_curve
from sklearn.metrics import brier_score_loss
import json
from pathlib import Path
@dataclass
class CalibrationMetrics:
"""Container for calibration evaluation metrics."""
ece: float # Expected Calibration Error
ace: float # Adaptive Calibration Error
mce: float # Maximum Calibration Error
brier_score: float # Brier Score
negative_log_likelihood: float # Negative Log Likelihood
reliability_diagram_data: Dict[str, List[float]]
@dataclass
class CalibrationDataPoint:
"""Single data point for calibration evaluation."""
predicted_confidence: float
actual_correctness: float # 0.0 or 1.0
query: str
answer: str
context_relevance: float
metadata: Dict[str, Any]
class ConfidenceCalibrator:
"""
Implements temperature scaling and other calibration methods for RAG systems.
Based on research best practices for confidence calibration in QA systems.
"""
def __init__(self):
self.temperature: Optional[float] = None
self.is_fitted = False
def fit_temperature_scaling(
self,
confidences: List[float],
correctness: List[float]
) -> float:
"""
Fit temperature scaling parameter using validation data.
Args:
confidences: Predicted confidence scores
correctness: Ground truth correctness (0.0 or 1.0)
Returns:
Optimal temperature parameter
"""
from scipy.optimize import minimize_scalar
# Create temporary evaluator for ECE computation
evaluator = CalibrationEvaluator()
def temperature_objective(temp: float) -> float:
"""Objective function for temperature scaling optimization."""
calibrated_confidences = self._apply_temperature_scaling(confidences, temp)
return evaluator._compute_ece(calibrated_confidences, correctness)
# Find optimal temperature
result = minimize_scalar(temperature_objective, bounds=(0.1, 5.0), method='bounded')
self.temperature = result.x
self.is_fitted = True
return self.temperature
def _apply_temperature_scaling(
self,
confidences: List[float],
temperature: float
) -> List[float]:
"""Apply temperature scaling to confidence scores."""
# Convert to logits, apply temperature, convert back to probabilities
confidences = np.array(confidences)
# Avoid log(0) and log(1)
confidences = np.clip(confidences, 1e-8, 1 - 1e-8)
logits = np.log(confidences / (1 - confidences))
scaled_logits = logits / temperature
scaled_confidences = 1 / (1 + np.exp(-scaled_logits))
return scaled_confidences.tolist()
def calibrate_confidence(self, confidence: float) -> float:
"""
Apply fitted temperature scaling to a single confidence score.
Args:
confidence: Raw confidence score
Returns:
Calibrated confidence score
"""
if not self.is_fitted:
raise ValueError("Calibrator must be fitted before use")
return self._apply_temperature_scaling([confidence], self.temperature)[0]
class CalibrationEvaluator:
"""
Evaluates confidence calibration using standard metrics.
Implements ECE, ACE, MCE, Brier Score, and reliability diagrams.
"""
def __init__(self, n_bins: int = 10):
self.n_bins = n_bins
def evaluate_calibration(
self,
data_points: List[CalibrationDataPoint]
) -> CalibrationMetrics:
"""
Compute comprehensive calibration metrics.
Args:
data_points: List of calibration data points
Returns:
CalibrationMetrics with all computed metrics
"""
confidences = [dp.predicted_confidence for dp in data_points]
correctness = [dp.actual_correctness for dp in data_points]
# Compute all metrics
ece = self._compute_ece(confidences, correctness)
ace = self._compute_ace(confidences, correctness)
mce = self._compute_mce(confidences, correctness)
brier = brier_score_loss(correctness, confidences)
nll = self._compute_nll(confidences, correctness)
reliability_data = self._compute_reliability_diagram_data(confidences, correctness)
return CalibrationMetrics(
ece=ece,
ace=ace,
mce=mce,
brier_score=brier,
negative_log_likelihood=nll,
reliability_diagram_data=reliability_data
)
def _compute_ece(self, confidences: List[float], correctness: List[float]) -> float:
"""
Compute Expected Calibration Error (ECE).
ECE measures the difference between confidence and accuracy across bins.
"""
confidences = np.array(confidences)
correctness = np.array(correctness)
bin_boundaries = np.linspace(0, 1, self.n_bins + 1)
bin_lowers = bin_boundaries[:-1]
bin_uppers = bin_boundaries[1:]
ece = 0.0
for bin_lower, bin_upper in zip(bin_lowers, bin_uppers):
# Find samples in this bin
in_bin = (confidences > bin_lower) & (confidences <= bin_upper)
prop_in_bin = in_bin.mean()
if prop_in_bin > 0:
accuracy_in_bin = correctness[in_bin].mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += np.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece
def _compute_ace(self, confidences: List[float], correctness: List[float]) -> float:
"""
Compute Adaptive Calibration Error (ACE).
ACE addresses binning bias by using equal-mass bins.
"""
confidences = np.array(confidences)
correctness = np.array(correctness)
# Sort by confidence
indices = np.argsort(confidences)
sorted_confidences = confidences[indices]
sorted_correctness = correctness[indices]
n_samples = len(confidences)
bin_size = n_samples // self.n_bins
ace = 0.0
for i in range(self.n_bins):
start_idx = i * bin_size
end_idx = (i + 1) * bin_size if i < self.n_bins - 1 else n_samples
bin_confidences = sorted_confidences[start_idx:end_idx]
bin_correctness = sorted_correctness[start_idx:end_idx]
if len(bin_confidences) > 0:
avg_confidence = bin_confidences.mean()
accuracy = bin_correctness.mean()
bin_weight = len(bin_confidences) / n_samples
ace += np.abs(avg_confidence - accuracy) * bin_weight
return ace
def _compute_mce(self, confidences: List[float], correctness: List[float]) -> float:
"""
Compute Maximum Calibration Error (MCE).
MCE is the maximum difference between confidence and accuracy across bins.
"""
confidences = np.array(confidences)
correctness = np.array(correctness)
bin_boundaries = np.linspace(0, 1, self.n_bins + 1)
bin_lowers = bin_boundaries[:-1]
bin_uppers = bin_boundaries[1:]
max_error = 0.0
for bin_lower, bin_upper in zip(bin_lowers, bin_uppers):
in_bin = (confidences > bin_lower) & (confidences <= bin_upper)
if in_bin.sum() > 0:
accuracy_in_bin = correctness[in_bin].mean()
avg_confidence_in_bin = confidences[in_bin].mean()
error = np.abs(avg_confidence_in_bin - accuracy_in_bin)
max_error = max(max_error, error)
return max_error
def _compute_nll(self, confidences: List[float], correctness: List[float]) -> float:
"""Compute Negative Log Likelihood."""
confidences = np.array(confidences)
correctness = np.array(correctness)
# Avoid log(0)
confidences = np.clip(confidences, 1e-8, 1 - 1e-8)
# For binary classification: NLL = -Σ[y*log(p) + (1-y)*log(1-p)]
nll = -(correctness * np.log(confidences) +
(1 - correctness) * np.log(1 - confidences)).mean()
return nll
def _compute_reliability_diagram_data(
self,
confidences: List[float],
correctness: List[float]
) -> Dict[str, List[float]]:
"""Compute data for reliability diagram visualization."""
confidences = np.array(confidences)
correctness = np.array(correctness)
bin_boundaries = np.linspace(0, 1, self.n_bins + 1)
bin_centers = (bin_boundaries[:-1] + bin_boundaries[1:]) / 2
bin_confidences = []
bin_accuracies = []
bin_counts = []
for i in range(self.n_bins):
bin_lower = bin_boundaries[i]
bin_upper = bin_boundaries[i + 1]
in_bin = (confidences > bin_lower) & (confidences <= bin_upper)
count = in_bin.sum()
if count > 0:
avg_confidence = confidences[in_bin].mean()
accuracy = correctness[in_bin].mean()
else:
avg_confidence = bin_centers[i]
accuracy = 0.0
bin_confidences.append(avg_confidence)
bin_accuracies.append(accuracy)
bin_counts.append(count)
return {
"bin_centers": bin_centers.tolist(),
"bin_confidences": bin_confidences,
"bin_accuracies": bin_accuracies,
"bin_counts": bin_counts
}
def plot_reliability_diagram(
self,
metrics: CalibrationMetrics,
save_path: Optional[Path] = None
) -> None:
"""
Create and optionally save a reliability diagram.
Args:
metrics: CalibrationMetrics containing reliability data
save_path: Optional path to save the plot
"""
data = metrics.reliability_diagram_data
fig, ax = plt.subplots(figsize=(8, 6))
# Plot reliability line (perfect calibration)
ax.plot([0, 1], [0, 1], 'k--', alpha=0.7, label='Perfect calibration')
# Plot actual calibration
ax.bar(
data["bin_centers"],
data["bin_accuracies"],
width=0.08,
alpha=0.7,
edgecolor='black',
label='Model calibration'
)
# Plot gap between confidence and accuracy
for center, conf, acc in zip(
data["bin_centers"],
data["bin_confidences"],
data["bin_accuracies"]
):
if conf != acc:
ax.plot([center, center], [acc, conf], 'r-', alpha=0.8, linewidth=2)
ax.set_xlabel('Confidence')
ax.set_ylabel('Accuracy')
ax.set_title(f'Reliability Diagram (ECE: {metrics.ece:.3f})')
ax.legend()
ax.grid(True, alpha=0.3)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.close()
else:
plt.show()
def create_evaluation_dataset_from_test_results(
test_results: List[Dict[str, Any]]
) -> List[CalibrationDataPoint]:
"""
Convert test results into calibration evaluation dataset.
Args:
test_results: List of test result dictionaries
Returns:
List of CalibrationDataPoint objects
"""
data_points = []
for result in test_results:
# Extract correctness (this would need domain-specific logic)
# For now, use a simple heuristic based on answer quality
correctness = _assess_answer_correctness(result)
data_point = CalibrationDataPoint(
predicted_confidence=result.get('confidence', 0.0),
actual_correctness=correctness,
query=result.get('query', ''),
answer=result.get('answer', ''),
context_relevance=_compute_context_relevance(result),
metadata={
'model_used': result.get('model_used', ''),
'retrieval_method': result.get('retrieval_method', ''),
'num_citations': len(result.get('citations', []))
}
)
data_points.append(data_point)
return data_points
def _assess_answer_correctness(result: Dict[str, Any]) -> float:
"""
Assess answer correctness for calibration evaluation.
This is a simplified heuristic - in practice, this should be:
1. Human evaluation
2. Automated fact-checking against ground truth
3. Domain-specific quality metrics
"""
answer = result.get('answer', '').lower()
citations = result.get('citations', [])
# Simple heuristic: consider correct if has citations and no uncertainty
uncertainty_phrases = [
'cannot answer', 'not contained', 'no relevant',
'insufficient information', 'unclear', 'not specified'
]
has_uncertainty = any(phrase in answer for phrase in uncertainty_phrases)
has_citations = len(citations) > 0
if has_uncertainty:
return 0.0 # Explicit uncertainty = incorrect/no answer
elif has_citations and len(answer.split()) > 10:
return 1.0 # Has citations and substantial answer = likely correct
else:
return 0.5 # Partial credit for borderline cases
def _compute_context_relevance(result: Dict[str, Any]) -> float:
"""Compute average relevance of retrieved context."""
citations = result.get('citations', [])
if not citations:
return 0.0
relevances = [citation.get('relevance', 0.0) for citation in citations]
return sum(relevances) / len(relevances)
if __name__ == "__main__":
# Example usage and testing
print("Testing confidence calibration framework...")
# Create mock data for testing
np.random.seed(42)
n_samples = 100
# Simulate miscalibrated confidence scores (too high)
true_correctness = np.random.binomial(1, 0.6, n_samples)
predicted_confidence = np.random.beta(8, 3, n_samples) # Overconfident
# Test calibration evaluation
evaluator = CalibrationEvaluator()
data_points = [
CalibrationDataPoint(
predicted_confidence=conf,
actual_correctness=float(correct),
query=f"query_{i}",
answer=f"answer_{i}",
context_relevance=0.7,
metadata={}
)
for i, (conf, correct) in enumerate(zip(predicted_confidence, true_correctness))
]
metrics = evaluator.evaluate_calibration(data_points)
print(f"Before calibration:")
print(f" ECE: {metrics.ece:.3f}")
print(f" ACE: {metrics.ace:.3f}")
print(f" MCE: {metrics.mce:.3f}")
print(f" Brier Score: {metrics.brier_score:.3f}")
# Test temperature scaling
calibrator = ConfidenceCalibrator()
optimal_temp = calibrator.fit_temperature_scaling(
predicted_confidence.tolist(),
true_correctness.tolist()
)
print(f" Optimal temperature: {optimal_temp:.3f}")
# Apply calibration
calibrated_confidences = [
calibrator.calibrate_confidence(conf) for conf in predicted_confidence
]
# Re-evaluate
calibrated_data_points = [
CalibrationDataPoint(
predicted_confidence=conf,
actual_correctness=float(correct),
query=f"query_{i}",
answer=f"answer_{i}",
context_relevance=0.7,
metadata={}
)
for i, (conf, correct) in enumerate(zip(calibrated_confidences, true_correctness))
]
calibrated_metrics = evaluator.evaluate_calibration(calibrated_data_points)
print(f"\nAfter temperature scaling:")
print(f" ECE: {calibrated_metrics.ece:.3f}")
print(f" ACE: {calibrated_metrics.ace:.3f}")
print(f" MCE: {calibrated_metrics.mce:.3f}")
print(f" Brier Score: {calibrated_metrics.brier_score:.3f}")
print("\n✅ Calibration framework working correctly!") |