Spaces:
Running
Running
File size: 22,708 Bytes
9f5e57c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
#!/usr/bin/env python3
"""
Production Monitoring for Confidence Calibration Drift
This module provides real-time monitoring of confidence calibration quality
in production, detecting drift and triggering recalibration alerts when needed.
"""
import json
import logging
from dataclasses import dataclass, asdict
from datetime import datetime, timedelta
from pathlib import Path
from typing import List, Dict, Any, Optional, Tuple
import numpy as np
from collections import deque
import statistics
# Import calibration framework
from confidence_calibration import CalibrationEvaluator, CalibrationDataPoint
logger = logging.getLogger(__name__)
@dataclass
class MonitoringMetrics:
"""Metrics for confidence calibration monitoring."""
timestamp: datetime
ece_score: float
ace_score: float
mce_score: float
brier_score: float
sample_count: int
avg_confidence: float
high_confidence_rate: float # Rate of >70% confidence predictions
low_confidence_rate: float # Rate of <30% confidence predictions
accuracy: float # Overall accuracy when available
@dataclass
class DriftAlert:
"""Alert for calibration drift detection."""
timestamp: datetime
alert_type: str # 'ECE_DRIFT', 'ACCURACY_DROP', 'CALIBRATION_DEGRADATION'
severity: str # 'WARNING', 'CRITICAL'
current_value: float
baseline_value: float
threshold: float
sample_count: int
recommendation: str
class CalibrationMonitor:
"""
Production monitoring system for confidence calibration drift detection.
Monitors confidence calibration quality in real-time and alerts when
recalibration is needed.
"""
def __init__(
self,
ece_threshold: float = 0.1,
accuracy_threshold: float = 0.05,
min_samples: int = 100,
monitoring_window: int = 1000,
baseline_metrics: Optional[MonitoringMetrics] = None
):
"""
Initialize the calibration monitor.
Args:
ece_threshold: Maximum acceptable ECE score
accuracy_threshold: Minimum accuracy drop to trigger alert
min_samples: Minimum samples before drift detection
monitoring_window: Size of rolling window for monitoring
baseline_metrics: Baseline metrics from validation
"""
self.ece_threshold = ece_threshold
self.accuracy_threshold = accuracy_threshold
self.min_samples = min_samples
self.monitoring_window = monitoring_window
self.baseline_metrics = baseline_metrics
# Rolling windows for monitoring
self.confidence_history = deque(maxlen=monitoring_window)
self.correctness_history = deque(maxlen=monitoring_window)
self.query_history = deque(maxlen=monitoring_window)
# Metrics tracking
self.metrics_history: List[MonitoringMetrics] = []
self.alerts_history: List[DriftAlert] = []
# Calibration evaluator for metrics calculation
self.evaluator = CalibrationEvaluator()
logger.info(f"CalibrationMonitor initialized with ECE threshold: {ece_threshold}")
def add_query_result(
self,
confidence: float,
correctness: Optional[float] = None,
query_metadata: Optional[Dict[str, Any]] = None
) -> Optional[DriftAlert]:
"""
Add a query result to the monitoring system.
Args:
confidence: Predicted confidence (0.0-1.0)
correctness: Actual correctness (0.0-1.0) if available
query_metadata: Additional query metadata
Returns:
DriftAlert if drift detected, None otherwise
"""
# Add to rolling windows
self.confidence_history.append(confidence)
if correctness is not None:
self.correctness_history.append(correctness)
query_data = {
'timestamp': datetime.now(),
'confidence': confidence,
'correctness': correctness,
'metadata': query_metadata
}
self.query_history.append(query_data)
# Check for drift if we have enough samples
if len(self.confidence_history) >= self.min_samples:
return self._check_drift()
return None
def _check_drift(self) -> Optional[DriftAlert]:
"""
Check for calibration drift in recent samples.
Returns:
DriftAlert if drift detected, None otherwise
"""
# Calculate current metrics
current_metrics = self._calculate_current_metrics()
if current_metrics is None:
return None
# Store metrics
self.metrics_history.append(current_metrics)
# Check for drift against thresholds
drift_alert = None
# ECE drift check
if current_metrics.ece_score > self.ece_threshold:
drift_alert = DriftAlert(
timestamp=datetime.now(),
alert_type='ECE_DRIFT',
severity='WARNING' if current_metrics.ece_score < self.ece_threshold * 1.5 else 'CRITICAL',
current_value=current_metrics.ece_score,
baseline_value=self.baseline_metrics.ece_score if self.baseline_metrics else 0.0,
threshold=self.ece_threshold,
sample_count=current_metrics.sample_count,
recommendation=self._get_drift_recommendation('ECE_DRIFT', current_metrics.ece_score)
)
# Accuracy drop check (if we have baseline)
elif (self.baseline_metrics and
current_metrics.accuracy < self.baseline_metrics.accuracy - self.accuracy_threshold):
drift_alert = DriftAlert(
timestamp=datetime.now(),
alert_type='ACCURACY_DROP',
severity='WARNING',
current_value=current_metrics.accuracy,
baseline_value=self.baseline_metrics.accuracy,
threshold=self.accuracy_threshold,
sample_count=current_metrics.sample_count,
recommendation=self._get_drift_recommendation('ACCURACY_DROP', current_metrics.accuracy)
)
# Log and store alert if detected
if drift_alert:
self.alerts_history.append(drift_alert)
logger.warning(f"Calibration drift detected: {drift_alert.alert_type} "
f"({drift_alert.current_value:.3f} vs threshold {drift_alert.threshold:.3f})")
return drift_alert
def _calculate_current_metrics(self) -> Optional[MonitoringMetrics]:
"""
Calculate current monitoring metrics from recent samples.
Returns:
MonitoringMetrics if sufficient data, None otherwise
"""
if len(self.confidence_history) < self.min_samples:
return None
confidences = list(self.confidence_history)
# If we have correctness data, calculate full metrics
if len(self.correctness_history) >= self.min_samples:
correctness = list(self.correctness_history)
# Calculate calibration metrics using simple data structure
data_points = [
CalibrationDataPoint(
predicted_confidence=conf,
actual_correctness=corr,
query="monitoring_query", # Placeholder for monitoring
answer="monitoring_answer", # Placeholder for monitoring
context_relevance=0.8, # Default relevance
metadata={"source": "production_monitoring"}
)
for conf, corr in zip(confidences[-len(correctness):], correctness)
]
# Calculate calibration metrics using evaluator
calibration_metrics = self.evaluator.evaluate_calibration(data_points)
ece = calibration_metrics.ece
ace = calibration_metrics.ace
mce = calibration_metrics.mce
brier = calibration_metrics.brier_score
accuracy = np.mean(correctness)
else:
# Limited metrics without correctness data
ece = ace = mce = brier = accuracy = 0.0
# Calculate distribution metrics
avg_confidence = np.mean(confidences)
high_confidence_rate = np.mean([c >= 0.7 for c in confidences])
low_confidence_rate = np.mean([c <= 0.3 for c in confidences])
return MonitoringMetrics(
timestamp=datetime.now(),
ece_score=ece,
ace_score=ace,
mce_score=mce,
brier_score=brier,
sample_count=len(confidences),
avg_confidence=avg_confidence,
high_confidence_rate=high_confidence_rate,
low_confidence_rate=low_confidence_rate,
accuracy=accuracy
)
def _get_drift_recommendation(self, alert_type: str, current_value: float) -> str:
"""
Get recommendation for handling detected drift.
Args:
alert_type: Type of drift detected
current_value: Current metric value
Returns:
Recommendation string
"""
recommendations = {
'ECE_DRIFT': f"""
Current ECE ({current_value:.3f}) exceeds threshold ({self.ece_threshold:.3f}).
Recommendations:
1. Collect new validation dataset (500+ samples)
2. Refit temperature scaling calibration
3. Update production calibration parameters
4. Monitor for improvement over next 100 queries
""",
'ACCURACY_DROP': f"""
Accuracy dropped to {current_value:.3f} (threshold: {self.accuracy_threshold:.3f}).
Recommendations:
1. Review recent query patterns for distribution shift
2. Check document quality and relevance
3. Consider expanding knowledge base
4. Retrain retrieval components if needed
""",
'CALIBRATION_DEGRADATION': f"""
Overall calibration quality degraded.
Recommendations:
1. Full system calibration review
2. Retrain confidence prediction components
3. Update system prompts and parameters
4. Implement A/B testing for improvements
"""
}
return recommendations.get(alert_type, "Contact ML engineering team for investigation.")
def get_monitoring_dashboard_data(self) -> Dict[str, Any]:
"""
Get data for monitoring dashboard display.
Returns:
Dictionary with dashboard metrics and visualizations
"""
current_metrics = self._calculate_current_metrics()
# Recent alerts (last 24 hours)
recent_alerts = [
alert for alert in self.alerts_history
if alert.timestamp > datetime.now() - timedelta(hours=24)
]
# Metrics trends (last 10 measurements)
recent_metrics = self.metrics_history[-10:] if self.metrics_history else []
dashboard_data = {
'current_status': {
'ece_score': current_metrics.ece_score if current_metrics else 0.0,
'ece_threshold': self.ece_threshold,
'sample_count': len(self.confidence_history),
'alerts_24h': len(recent_alerts),
'status': 'HEALTHY' if not recent_alerts else 'NEEDS_ATTENTION'
},
'metrics': {
'avg_confidence': current_metrics.avg_confidence if current_metrics else 0.0,
'high_confidence_rate': current_metrics.high_confidence_rate if current_metrics else 0.0,
'low_confidence_rate': current_metrics.low_confidence_rate if current_metrics else 0.0,
'accuracy': current_metrics.accuracy if current_metrics else 0.0
},
'trends': {
'timestamps': [m.timestamp.isoformat() for m in recent_metrics],
'ece_scores': [m.ece_score for m in recent_metrics],
'avg_confidences': [m.avg_confidence for m in recent_metrics],
'accuracies': [m.accuracy for m in recent_metrics]
},
'recent_alerts': [
{
'timestamp': alert.timestamp.isoformat(),
'type': alert.alert_type,
'severity': alert.severity,
'current_value': alert.current_value,
'threshold': alert.threshold
}
for alert in recent_alerts
]
}
return dashboard_data
def export_monitoring_report(self, filepath: str) -> bool:
"""
Export comprehensive monitoring report to file.
Args:
filepath: Path to save report
Returns:
True if successful, False otherwise
"""
try:
report_data = {
'report_timestamp': datetime.now().isoformat(),
'monitoring_config': {
'ece_threshold': self.ece_threshold,
'accuracy_threshold': self.accuracy_threshold,
'min_samples': self.min_samples,
'monitoring_window': self.monitoring_window
},
'baseline_metrics': asdict(self.baseline_metrics) if self.baseline_metrics else None,
'current_metrics': asdict(self._calculate_current_metrics()) if self._calculate_current_metrics() else None,
'metrics_history': [asdict(m) for m in self.metrics_history],
'alerts_history': [asdict(a) for a in self.alerts_history],
'dashboard_data': self.get_monitoring_dashboard_data(),
'recommendations': self._generate_system_recommendations()
}
with open(filepath, 'w') as f:
json.dump(report_data, f, indent=2, default=str)
logger.info(f"Monitoring report exported to {filepath}")
return True
except Exception as e:
logger.error(f"Failed to export monitoring report: {e}")
return False
def _generate_system_recommendations(self) -> List[str]:
"""
Generate system-level recommendations based on monitoring data.
Returns:
List of recommendation strings
"""
recommendations = []
current_metrics = self._calculate_current_metrics()
if not current_metrics:
return ["Insufficient data for recommendations. Continue monitoring."]
# ECE recommendations
if current_metrics.ece_score > self.ece_threshold:
recommendations.append(f"ECE score ({current_metrics.ece_score:.3f}) exceeds threshold. Recalibration needed.")
elif current_metrics.ece_score > self.ece_threshold * 0.8:
recommendations.append("ECE score approaching threshold. Monitor closely.")
# Confidence distribution recommendations
if current_metrics.high_confidence_rate < 0.3:
recommendations.append("Low high-confidence rate. Review system prompt and context quality.")
elif current_metrics.high_confidence_rate > 0.8:
recommendations.append("Very high confidence rate. Check for overconfidence bias.")
if current_metrics.low_confidence_rate > 0.3:
recommendations.append("High low-confidence rate. Improve context retrieval or expand knowledge base.")
# Alert-based recommendations
recent_alerts = [a for a in self.alerts_history if a.timestamp > datetime.now() - timedelta(days=7)]
if len(recent_alerts) > 3:
recommendations.append("Multiple alerts in past week. Full system review recommended.")
if not recommendations:
recommendations.append("System performing within acceptable parameters. Continue monitoring.")
return recommendations
class ProductionIntegration:
"""
Integration helper for adding monitoring to production RAG system.
"""
@staticmethod
def create_monitoring_middleware(monitor: CalibrationMonitor):
"""
Create middleware function for automatic monitoring integration.
Args:
monitor: CalibrationMonitor instance
Returns:
Middleware function
"""
def monitoring_middleware(query_func):
def wrapped_query(*args, **kwargs):
# Execute original query
result = query_func(*args, **kwargs)
# Extract confidence for monitoring
confidence = result.get('confidence', 0.0)
# Add to monitoring (correctness would need human labeling)
alert = monitor.add_query_result(confidence)
# Add monitoring metadata to result
result['monitoring'] = {
'alert': asdict(alert) if alert else None,
'sample_count': len(monitor.confidence_history),
'ece_status': 'OK' if not alert else alert.alert_type
}
return result
return wrapped_query
return monitoring_middleware
@staticmethod
def setup_production_monitoring(
rag_system,
baseline_metrics_file: Optional[str] = None,
monitoring_config: Optional[Dict[str, Any]] = None
) -> CalibrationMonitor:
"""
Set up production monitoring for RAG system.
Args:
rag_system: RAG system instance
baseline_metrics_file: Path to baseline metrics JSON
monitoring_config: Configuration overrides
Returns:
Configured CalibrationMonitor
"""
# Load baseline metrics if available
baseline_metrics = None
if baseline_metrics_file and Path(baseline_metrics_file).exists():
try:
with open(baseline_metrics_file, 'r') as f:
baseline_data = json.load(f)
baseline_metrics = MonitoringMetrics(**baseline_data)
logger.info(f"Loaded baseline metrics from {baseline_metrics_file}")
except Exception as e:
logger.warning(f"Failed to load baseline metrics: {e}")
# Apply configuration
config = monitoring_config or {}
monitor = CalibrationMonitor(
ece_threshold=config.get('ece_threshold', 0.1),
accuracy_threshold=config.get('accuracy_threshold', 0.05),
min_samples=config.get('min_samples', 100),
monitoring_window=config.get('monitoring_window', 1000),
baseline_metrics=baseline_metrics
)
# Integrate monitoring middleware
if hasattr(rag_system, 'query_with_answer'):
middleware = ProductionIntegration.create_monitoring_middleware(monitor)
rag_system.query_with_answer = middleware(rag_system.query_with_answer)
logger.info("Monitoring middleware integrated with RAG system")
return monitor
def create_baseline_metrics_from_validation(
validation_data: List[Dict[str, float]],
output_file: str
) -> MonitoringMetrics:
"""
Create baseline metrics from validation dataset.
Args:
validation_data: List of dicts with 'confidence' and 'correctness'
output_file: Path to save baseline metrics
Returns:
MonitoringMetrics baseline
"""
evaluator = CalibrationEvaluator()
# Convert to data points
data_points = [
CalibrationDataPoint(item['confidence'], item['correctness'])
for item in validation_data
]
# Calculate metrics
ece = evaluator.expected_calibration_error(data_points)
ace = evaluator.adaptive_calibration_error(data_points)
mce = evaluator.maximum_calibration_error(data_points)
brier = evaluator.brier_score(data_points)
confidences = [item['confidence'] for item in validation_data]
correctness = [item['correctness'] for item in validation_data]
baseline_metrics = MonitoringMetrics(
timestamp=datetime.now(),
ece_score=ece,
ace_score=ace,
mce_score=mce,
brier_score=brier,
sample_count=len(validation_data),
avg_confidence=np.mean(confidences),
high_confidence_rate=np.mean([c >= 0.7 for c in confidences]),
low_confidence_rate=np.mean([c <= 0.3 for c in confidences]),
accuracy=np.mean(correctness)
)
# Save baseline metrics
with open(output_file, 'w') as f:
json.dump(asdict(baseline_metrics), f, indent=2, default=str)
logger.info(f"Baseline metrics saved to {output_file}")
return baseline_metrics
if __name__ == "__main__":
# Example usage
print("π Testing Production Monitoring System")
# Create monitor
monitor = CalibrationMonitor(
ece_threshold=0.1,
min_samples=10 # Lower for testing
)
# Simulate some queries
import random
np.random.seed(42)
print("\nπ Simulating query results...")
for i in range(50):
# Simulate realistic confidence and correctness
confidence = max(0.1, min(0.9, np.random.normal(0.7, 0.2)))
correctness = 1.0 if confidence > 0.6 else 0.0
alert = monitor.add_query_result(confidence, correctness)
if alert:
print(f"π¨ Alert detected: {alert.alert_type} (ECE: {alert.current_value:.3f})")
# Get dashboard data
dashboard = monitor.get_monitoring_dashboard_data()
print(f"\nπ Dashboard Status: {dashboard['current_status']['status']}")
print(f"Current ECE: {dashboard['current_status']['ece_score']:.3f}")
print(f"Sample Count: {dashboard['current_status']['sample_count']}")
# Export report
monitor.export_monitoring_report("monitoring_test_report.json")
print("β
Production monitoring test completed!") |