Spaces:
Running
Running
File size: 17,050 Bytes
9f5e57c c29b59a 9f5e57c 741bf73 050883e ccffc30 741bf73 163ed2c 9f5e57c ad67efa 050883e 9f5e57c ccffc30 741bf73 9f5e57c ccffc30 9f5e57c ccffc30 9f5e57c 050883e ccffc30 741bf73 9f5e57c 741bf73 49dcc7e 69e91c7 49dcc7e 741bf73 69e91c7 49dcc7e 69e91c7 49dcc7e 741bf73 ccffc30 741bf73 ccffc30 49dcc7e 741bf73 9f5e57c 050883e 9f5e57c 49dcc7e 741bf73 49dcc7e 9f5e57c 1f4f2f0 9f5e57c 1f4f2f0 9f5e57c 49dcc7e 9f5e57c 1f4f2f0 9f5e57c 1f4f2f0 9f5e57c 050883e 9f5e57c 1f4f2f0 9f5e57c 1f4f2f0 9f5e57c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
"""
Enhanced RAG system with integrated answer generation.
This module extends BasicRAG to include answer generation capabilities
using local LLMs via Ollama, with specialized prompt templates for
technical documentation.
"""
import time
from pathlib import Path
from typing import Dict, List, Optional, Union, Generator
import sys
# Import from same directory
from src.basic_rag import BasicRAG
# Import from shared utils - Support HF API, Ollama, and Inference Providers
from src.shared_utils.generation.hf_answer_generator import HuggingFaceAnswerGenerator, GeneratedAnswer
from src.shared_utils.generation.ollama_answer_generator import OllamaAnswerGenerator
from src.shared_utils.generation.inference_providers_generator import InferenceProvidersGenerator
from src.shared_utils.generation.prompt_templates import TechnicalPromptTemplates
class RAGWithGeneration(BasicRAG):
"""
Extended RAG system with answer generation capabilities.
Combines hybrid search with LLM-based answer generation,
optimized for technical documentation Q&A.
"""
def __init__(
self,
model_name: str = "sshleifer/distilbart-cnn-12-6",
api_token: str = None,
temperature: float = 0.3,
max_tokens: int = 512,
use_ollama: bool = False,
ollama_url: str = "http://localhost:11434",
use_inference_providers: bool = False
):
"""
Initialize RAG with generation capabilities.
Args:
model_name: Model for generation (HF model or Ollama model)
api_token: HF API token (for HF models only)
temperature: Generation temperature
max_tokens: Maximum tokens to generate
use_ollama: If True, use local Ollama instead of HuggingFace API
ollama_url: Ollama server URL (if using Ollama)
use_inference_providers: If True, use new Inference Providers API
"""
super().__init__()
# Choose generator based on configuration with fallback chain
if use_inference_providers:
# Try new Inference Providers API first
print(f"π Trying HuggingFace Inference Providers API...", file=sys.stderr, flush=True)
try:
self.answer_generator = InferenceProvidersGenerator(
model_name=None, # Let it auto-select best available model
api_token=api_token,
temperature=temperature,
max_tokens=max_tokens
)
print(f"β
Inference Providers API connected successfully", file=sys.stderr, flush=True)
self._using_ollama = False
self._using_inference_providers = True
except Exception as e:
print(f"β Inference Providers failed: {e}", file=sys.stderr, flush=True)
print(f"π Falling back to classic HuggingFace API...", file=sys.stderr, flush=True)
# Fallback to classic HF API
self.answer_generator = HuggingFaceAnswerGenerator(
model_name=model_name,
api_token=api_token,
temperature=temperature,
max_tokens=max_tokens
)
print(f"β
HuggingFace classic API ready", file=sys.stderr, flush=True)
self._using_ollama = False
self._using_inference_providers = False
elif use_ollama:
print(f"π¦ Trying local Ollama server at {ollama_url}...", file=sys.stderr, flush=True)
try:
self.answer_generator = OllamaAnswerGenerator(
model_name=model_name,
base_url=ollama_url,
temperature=temperature,
max_tokens=max_tokens
)
print(f"β
Ollama connected successfully with {model_name}", file=sys.stderr, flush=True)
self._using_ollama = True
self._using_inference_providers = False
except Exception as e:
print(f"β Ollama failed: {e}", file=sys.stderr, flush=True)
print(f"π Falling back to HuggingFace API...", file=sys.stderr, flush=True)
# Fallback to HuggingFace
hf_model = "sshleifer/distilbart-cnn-12-6"
self.answer_generator = HuggingFaceAnswerGenerator(
model_name=hf_model,
api_token=api_token,
temperature=temperature,
max_tokens=max_tokens
)
print(f"β
HuggingFace fallback ready with {hf_model}", file=sys.stderr, flush=True)
self._using_ollama = False
self._using_inference_providers = False
else:
print("π€ Using HuggingFace classic API...", file=sys.stderr, flush=True)
self.answer_generator = HuggingFaceAnswerGenerator(
model_name=model_name,
api_token=api_token,
temperature=temperature,
max_tokens=max_tokens
)
self._using_ollama = False
self._using_inference_providers = False
self.prompt_templates = TechnicalPromptTemplates()
self.enable_streaming = False # HF API doesn't support streaming in this implementation
def get_generator_info(self) -> Dict[str, str]:
"""Get information about the current answer generator."""
return {
"using_ollama": getattr(self, '_using_ollama', False),
"using_inference_providers": getattr(self, '_using_inference_providers', False),
"generator_type": type(self.answer_generator).__name__,
"model_name": getattr(self.answer_generator, 'model_name', 'unknown'),
"base_url": getattr(self.answer_generator, 'base_url', None)
}
def query_with_answer(
self,
question: str,
top_k: int = 5,
use_hybrid: bool = True,
dense_weight: float = 0.7,
use_fallback_llm: bool = False,
return_context: bool = False,
similarity_threshold: float = 0.3
) -> Dict:
"""
Query the system and generate a complete answer.
Args:
question: User's question
top_k: Number of chunks to retrieve
use_hybrid: Whether to use hybrid search (vs basic semantic)
dense_weight: Weight for dense retrieval in hybrid search
use_fallback_llm: Whether to use fallback LLM model
return_context: Whether to include retrieved chunks in response
similarity_threshold: Minimum similarity score to include results (0.3 = 30%)
Returns:
Dict containing:
- answer: Generated answer text
- citations: List of citations with sources
- confidence: Confidence score
- sources: List of unique source documents
- retrieval_stats: Statistics from retrieval
- generation_stats: Statistics from generation
- context (optional): Retrieved chunks if requested
"""
start_time = time.time()
# Debug: Show which generator is being used
generator_info = self.get_generator_info()
print(f"π§ Debug: Using {generator_info['generator_type']} (Ollama: {generator_info['using_ollama']}) with model {generator_info['model_name']}", file=sys.stderr, flush=True)
# Step 1: Retrieve relevant chunks
if use_hybrid and self.hybrid_retriever is not None:
retrieval_result = self.hybrid_query(question, top_k, dense_weight, similarity_threshold)
else:
retrieval_result = self.query(question, top_k, similarity_threshold)
retrieval_time = time.time() - start_time
# Step 2: Generate answer using retrieved chunks
chunks = retrieval_result.get("chunks", [])
if not chunks:
return {
"answer": "I couldn't find relevant information in the documentation to answer your question.",
"citations": [],
"confidence": 0.0,
"sources": [],
"retrieval_stats": {
"method": retrieval_result.get("retrieval_method", "none"),
"chunks_retrieved": 0,
"retrieval_time": retrieval_time
},
"generation_stats": {
"model": "none",
"generation_time": 0.0
}
}
# Prepare chunks for answer generator
formatted_chunks = []
for chunk in chunks:
formatted_chunk = {
"id": f"chunk_{chunk.get('chunk_id', 0)}",
"content": chunk.get("text", ""),
"metadata": {
"page_number": chunk.get("page", 0),
"source": Path(chunk.get("source", "unknown")).name,
"quality_score": chunk.get("quality_score", 0.0)
},
"score": chunk.get("hybrid_score", chunk.get("similarity_score", 0.0))
}
formatted_chunks.append(formatted_chunk)
# Generate answer
generation_start = time.time()
generated_answer = self.answer_generator.generate(
query=question,
chunks=formatted_chunks
)
generation_time = time.time() - generation_start
# Prepare response
response = {
"answer": generated_answer.answer,
"citations": [
{
"source": citation.source_file,
"page": citation.page_number,
"relevance": citation.relevance_score,
"snippet": citation.text_snippet
}
for citation in generated_answer.citations
],
"confidence": generated_answer.confidence_score,
"sources": list(set(chunk.get("source", "unknown") for chunk in chunks)),
"retrieval_stats": {
"method": retrieval_result.get("retrieval_method", "semantic"),
"chunks_retrieved": len(chunks),
"retrieval_time": retrieval_time,
"dense_weight": retrieval_result.get("dense_weight", 1.0),
"sparse_weight": retrieval_result.get("sparse_weight", 0.0)
},
"generation_stats": {
"model": generated_answer.model_used,
"generation_time": generation_time,
"total_time": time.time() - start_time
}
}
# Optionally include context
if return_context:
response["context"] = chunks
return response
def query_with_answer_stream(
self,
question: str,
top_k: int = 5,
use_hybrid: bool = True,
dense_weight: float = 0.7,
use_fallback_llm: bool = False
) -> Generator[Union[str, Dict], None, None]:
"""
Query the system and stream the answer generation.
Args:
question: User's question
top_k: Number of chunks to retrieve
use_hybrid: Whether to use hybrid search
dense_weight: Weight for dense retrieval
use_fallback_llm: Whether to use fallback LLM
Yields:
Partial answer strings during generation
Returns:
Final complete response dict (after generator exhaustion)
"""
if not self.enable_streaming:
# Fall back to non-streaming if disabled
result = self.query_with_answer(
question, top_k, use_hybrid, dense_weight, use_fallback_llm
)
yield result["answer"]
yield result
return
start_time = time.time()
# Step 1: Retrieve relevant chunks
if use_hybrid and self.hybrid_retriever is not None:
retrieval_result = self.hybrid_query(question, top_k, dense_weight, similarity_threshold)
else:
retrieval_result = self.query(question, top_k, similarity_threshold)
retrieval_time = time.time() - start_time
# Step 2: Stream answer generation
chunks = retrieval_result.get("chunks", [])
if not chunks:
yield "I couldn't find relevant information in the documentation to answer your question."
yield {
"answer": "I couldn't find relevant information in the documentation to answer your question.",
"citations": [],
"confidence": 0.0,
"sources": [],
"retrieval_stats": {"chunks_retrieved": 0, "retrieval_time": retrieval_time}
}
return
# Prepare chunks
formatted_chunks = []
for chunk in chunks:
formatted_chunk = {
"id": f"chunk_{chunk.get('chunk_id', 0)}",
"content": chunk.get("text", ""),
"metadata": {
"page_number": chunk.get("page", 0),
"source": Path(chunk.get("source", "unknown")).name,
"quality_score": chunk.get("quality_score", 0.0)
},
"score": chunk.get("hybrid_score", chunk.get("similarity_score", 0.0))
}
formatted_chunks.append(formatted_chunk)
# Stream generation
generation_start = time.time()
stream_generator = self.answer_generator.generate_stream(
query=question,
chunks=formatted_chunks,
use_fallback=use_fallback_llm
)
# Stream partial results
for partial in stream_generator:
if isinstance(partial, str):
yield partial
elif isinstance(partial, GeneratedAnswer):
# Final result
generation_time = time.time() - generation_start
final_response = {
"answer": partial.answer,
"citations": [
{
"source": citation.source_file,
"page": citation.page_number,
"relevance": citation.relevance_score,
"snippet": citation.text_snippet
}
for citation in partial.citations
],
"confidence": partial.confidence_score,
"sources": list(set(chunk.get("source", "unknown") for chunk in chunks)),
"retrieval_stats": {
"method": retrieval_result.get("retrieval_method", "semantic"),
"chunks_retrieved": len(chunks),
"retrieval_time": retrieval_time
},
"generation_stats": {
"model": partial.model_used,
"generation_time": generation_time,
"total_time": time.time() - start_time
}
}
yield final_response
def get_formatted_answer(self, response: Dict) -> str:
"""
Format a query response for display.
Args:
response: Response dict from query_with_answer
Returns:
Formatted string for display
"""
formatted = f"**Answer:**\n{response['answer']}\n\n"
if response['citations']:
formatted += "**Sources:**\n"
for i, citation in enumerate(response['citations'], 1):
formatted += f"{i}. {citation['source']} (Page {citation['page']})\n"
formatted += f"\n*Confidence: {response['confidence']:.1%} | "
formatted += f"Model: {response['generation_stats']['model']} | "
formatted += f"Time: {response['generation_stats']['total_time']:.2f}s*"
return formatted
# Example usage
if __name__ == "__main__":
# Initialize RAG with generation
rag = RAGWithGeneration()
# Example query (would need indexed documents first)
question = "What is RISC-V and what are its main features?"
print("Initializing system...")
print(f"Primary model: llama3.2:3b")
print(f"Fallback model: mistral:latest")
# Note: This would only work after indexing documents
# Example of how to use:
# rag.index_document(Path("path/to/document.pdf"))
# result = rag.query_with_answer(question)
# print(rag.get_formatted_answer(result)) |