Spaces:
Running
Running
File size: 26,926 Bytes
050883e 118e3aa 050883e 0ad679e 050883e 0ad679e 050883e ad67efa 050883e a5a1df7 050883e 0ad679e 050883e 0ad679e 99bea2b 0ad679e 30cfc4c 0ad679e f9a3cd6 0ad679e 050883e 33166ee 30cfc4c f9a3cd6 f140a37 85734b3 f140a37 85734b3 f140a37 85734b3 33166ee f140a37 33166ee 050883e 33166ee 050883e 30cfc4c dde4040 30cfc4c dde4040 30cfc4c dde4040 ad67efa 30cfc4c 050883e 9d5ce74 050883e 9d5ce74 050883e 9d5ce74 0ad679e 9d5ce74 0ad679e 050883e f9a3cd6 ad67efa dde4040 30cfc4c dde4040 ad67efa dde4040 30cfc4c 99bea2b 30cfc4c 99bea2b 30cfc4c 99bea2b 30cfc4c 99bea2b f9a3cd6 30cfc4c f9a3cd6 399d1d1 050883e f9a3cd6 99bea2b 30cfc4c 99bea2b f9a3cd6 30cfc4c f9a3cd6 399d1d1 050883e 399d1d1 050883e 399d1d1 050883e 399d1d1 050883e 118e3aa 050883e 118e3aa dde4040 33166ee 118e3aa 33166ee 118e3aa 33166ee f140a37 118e3aa f140a37 118e3aa f140a37 118e3aa f140a37 118e3aa f140a37 118e3aa f140a37 118e3aa 050883e 118e3aa 050883e 118e3aa 050883e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
"""
HuggingFace API-based answer generation for deployment environments.
This module provides answer generation using HuggingFace's Inference API,
optimized for cloud deployment where local LLMs aren't feasible.
"""
import json
import logging
from dataclasses import dataclass
from typing import List, Dict, Any, Optional, Generator, Tuple
from datetime import datetime
import re
from pathlib import Path
import requests
import os
import sys
# Import technical prompt templates
from .prompt_templates import TechnicalPromptTemplates
logger = logging.getLogger(__name__)
@dataclass
class Citation:
"""Represents a citation to a source document chunk."""
chunk_id: str
page_number: int
source_file: str
relevance_score: float
text_snippet: str
@dataclass
class GeneratedAnswer:
"""Represents a generated answer with citations."""
answer: str
citations: List[Citation]
confidence_score: float
generation_time: float
model_used: str
context_used: List[Dict[str, Any]]
class HuggingFaceAnswerGenerator:
"""
Generates answers using HuggingFace Inference API with hybrid reliability.
π― HYBRID APPROACH - Best of Both Worlds:
- Primary: High-quality open models (Zephyr-7B, Mistral-7B-Instruct)
- Fallback: Reliable classics (DialoGPT-medium)
- Foundation: HF GPT's proven Docker + auth setup
- Pro Benefits: Better rate limits, priority processing
Optimized for deployment environments with:
- Fast API-based inference
- No local model requirements
- Citation extraction and formatting
- Confidence scoring
- Automatic fallback for reliability
"""
def __init__(
self,
model_name: str = "sshleifer/distilbart-cnn-12-6",
api_token: Optional[str] = None,
temperature: float = 0.3,
max_tokens: int = 512
):
"""
Initialize the HuggingFace answer generator.
Args:
model_name: HuggingFace model to use
api_token: HF API token (optional, uses free tier if None)
temperature: Generation temperature (0.0-1.0)
max_tokens: Maximum tokens to generate
"""
self.model_name = model_name
# Try multiple common token environment variable names
self.api_token = (api_token or
os.getenv("HUGGINGFACE_API_TOKEN") or
os.getenv("HF_TOKEN") or
os.getenv("HF_API_TOKEN"))
self.temperature = temperature
self.max_tokens = max_tokens
# Hybrid approach: Classic API + fallback models
self.api_url = f"https://api-inference.huggingface.co/models/{model_name}"
# Prepare headers
self.headers = {"Content-Type": "application/json"}
if self.api_token:
self.headers["Authorization"] = f"Bearer {self.api_token}"
logger.info("Using authenticated HuggingFace API")
else:
logger.info("Using free HuggingFace API (rate limited)")
# Only include models that actually work based on tests
self.fallback_models = [
"deepset/roberta-base-squad2", # Q&A model - perfect for RAG
"sshleifer/distilbart-cnn-12-6", # Summarization - also good
"facebook/bart-base", # Base BART - works but needs right format
]
def _call_api_with_model(self, prompt: str, model_name: str) -> str:
"""Call API with a specific model (for fallback support)."""
fallback_url = f"https://api-inference.huggingface.co/models/{model_name}"
# SIMPLIFIED payload that works
payload = {"inputs": prompt}
response = requests.post(
fallback_url,
headers=self.headers,
json=payload,
timeout=30
)
response.raise_for_status()
result = response.json()
# Handle response
if isinstance(result, list) and len(result) > 0:
if isinstance(result[0], dict):
return result[0].get("generated_text", "").strip()
else:
return str(result[0]).strip()
elif isinstance(result, dict):
return result.get("generated_text", "").strip()
else:
return str(result).strip()
def _create_system_prompt(self) -> str:
"""Create system prompt optimized for the model type."""
if "squad" in self.model_name.lower() or "roberta" in self.model_name.lower():
# RoBERTa Squad2 uses question/context format - no system prompt needed
return ""
elif "gpt2" in self.model_name.lower() or "distilgpt2" in self.model_name.lower():
# GPT-2 style completion prompt - simpler is better
return "Based on the following context, answer the question.\n\nContext: "
elif "llama" in self.model_name.lower():
# Llama-2 chat format
return """<s>[INST] You are a helpful technical documentation assistant. Answer the user's question based only on the provided context. Always cite sources using [chunk_X] format.
Context:"""
elif "flan" in self.model_name.lower() or "t5" in self.model_name.lower():
# Flan-T5 instruction format - simple and direct
return """Answer the question based on the context below. Cite sources using [chunk_X] format.
Context: """
elif "falcon" in self.model_name.lower():
# Falcon instruction format
return """### Instruction: Answer based on the context and cite sources with [chunk_X].
### Context: """
elif "bart" in self.model_name.lower():
# BART summarization format
return """Summarize the answer to the question from the context. Use [chunk_X] for citations.
Context: """
else:
# Default instruction prompt for other models
return """You are a technical documentation assistant that provides clear, accurate answers based on the provided context.
CORE PRINCIPLES:
1. ANSWER DIRECTLY: If context contains the answer, provide it clearly and confidently
2. BE CONCISE: Keep responses focused and avoid unnecessary uncertainty language
3. CITE ACCURATELY: Use [chunk_X] citations for every fact from context
RESPONSE GUIDELINES:
- If context has sufficient information β Answer directly and confidently
- If context has partial information β Answer what's available, note what's missing briefly
- If context is irrelevant β Brief refusal: "This information isn't available in the provided documents"
CITATION FORMAT:
- Use [chunk_1], [chunk_2] etc. for all facts from context
- Example: "According to [chunk_1], RISC-V is an open-source architecture."
Be direct, confident, and accurate. If the context answers the question, provide that answer clearly."""
def _format_context(self, chunks: List[Dict[str, Any]]) -> str:
"""
Format retrieved chunks into context for the LLM.
Args:
chunks: List of retrieved chunks with metadata
Returns:
Formatted context string
"""
context_parts = []
for i, chunk in enumerate(chunks):
chunk_text = chunk.get('content', chunk.get('text', ''))
page_num = chunk.get('metadata', {}).get('page_number', 'unknown')
source = chunk.get('metadata', {}).get('source', 'unknown')
context_parts.append(
f"[chunk_{i+1}] (Page {page_num} from {source}):\n{chunk_text}\n"
)
return "\n---\n".join(context_parts)
def _call_api(self, prompt: str) -> str:
"""
Call HuggingFace Inference API.
Args:
prompt: Input prompt for the model
Returns:
Generated text response
"""
# Validate prompt
if not prompt or len(prompt.strip()) < 5:
logger.warning(f"Prompt too short: '{prompt}' - padding it")
prompt = f"Please provide information about: {prompt}. Based on the context, give a detailed answer."
# Model-specific payload formatting
if "squad" in self.model_name.lower() or "roberta" in self.model_name.lower():
# RoBERTa Squad2 needs question and context separately
# Parse the structured prompt format we create
if "Context:" in prompt and "Question:" in prompt:
# Split by the markers we use
parts = prompt.split("Question:")
if len(parts) == 2:
context_part = parts[0].replace("Context:", "").strip()
question_part = parts[1].strip()
else:
# Fallback
question_part = "What is this about?"
context_part = prompt
else:
# Fallback for unexpected format
question_part = "What is this about?"
context_part = prompt
# Clean up the context and question
context_part = context_part.replace("---", "").strip()
if not question_part or len(question_part.strip()) < 3:
question_part = "What is the main information?"
# Debug output
print(f"π Squad2 Question: {question_part[:100]}...")
print(f"π Squad2 Context: {context_part[:200]}...")
payload = {
"inputs": {
"question": question_part,
"context": context_part
}
}
elif "bart" in self.model_name.lower() or "distilbart" in self.model_name.lower():
# BART/DistilBART for summarization
if len(prompt) < 50:
prompt = f"{prompt} Please provide a comprehensive answer based on the available information."
payload = {
"inputs": prompt,
"parameters": {
"max_length": 150,
"min_length": 10,
"do_sample": False
}
}
else:
# Simple payload for other models
payload = {"inputs": prompt}
try:
logger.info(f"Calling API URL: {self.api_url}")
logger.info(f"Headers: {self.headers}")
logger.info(f"Payload: {payload}")
response = requests.post(
self.api_url,
headers=self.headers,
json=payload,
timeout=30
)
logger.info(f"Response status: {response.status_code}")
logger.info(f"Response headers: {response.headers}")
if response.status_code == 503:
# Model is loading, wait and retry
logger.warning("Model loading, waiting 20 seconds...")
import time
time.sleep(20)
response = requests.post(
self.api_url,
headers=self.headers,
json=payload,
timeout=30
)
logger.info(f"Retry response status: {response.status_code}")
if response.status_code == 404:
logger.error(f"Model not found: {self.model_name}")
logger.error(f"Response text: {response.text}")
# Try fallback models
for fallback_model in self.fallback_models:
if fallback_model != self.model_name:
logger.info(f"Trying fallback model: {fallback_model}")
try:
return self._call_api_with_model(prompt, fallback_model)
except Exception as e:
logger.warning(f"Fallback model {fallback_model} failed: {e}")
continue
return "All models are currently unavailable. Please try again later."
response.raise_for_status()
result = response.json()
# Handle different response formats based on model type
print(f"π API Response type: {type(result)}")
print(f"π API Response preview: {str(result)[:300]}...")
if isinstance(result, dict) and "answer" in result:
# RoBERTa Squad2 format: {"answer": "...", "score": ..., "start": ..., "end": ...}
answer = result["answer"].strip()
print(f"π Squad2 extracted answer: {answer}")
return answer
elif isinstance(result, list) and len(result) > 0:
# Check for DistilBART format (returns dict with summary_text)
if isinstance(result[0], dict) and "summary_text" in result[0]:
return result[0]["summary_text"].strip()
# Check for nested list (BART format: [[...]])
elif isinstance(result[0], list) and len(result[0]) > 0:
if isinstance(result[0][0], dict):
return result[0][0].get("summary_text", str(result[0][0])).strip()
else:
# BART base returns embeddings - not useful for text generation
logger.warning("BART returned embeddings instead of text")
return "Model returned embeddings instead of text. Please try a different model."
# Regular list format
elif isinstance(result[0], dict):
# Try different keys that models might use
text = (result[0].get("generated_text", "") or
result[0].get("summary_text", "") or
result[0].get("translation_text", "") or
result[0].get("answer", "") or
str(result[0]))
# Remove the input prompt from the output if present
if isinstance(prompt, str) and text.startswith(prompt):
text = text[len(prompt):].strip()
return text
else:
return str(result[0]).strip()
elif isinstance(result, dict):
# Some models return dict directly
text = (result.get("generated_text", "") or
result.get("summary_text", "") or
result.get("translation_text", "") or
result.get("answer", "") or
str(result))
# Remove input prompt if model included it
if isinstance(prompt, str) and text.startswith(prompt):
text = text[len(prompt):].strip()
return text
elif isinstance(result, str):
return result.strip()
else:
logger.error(f"Unexpected response format: {type(result)} - {result}")
return "I apologize, but I couldn't generate a response."
except requests.exceptions.RequestException as e:
logger.error(f"API request failed: {e}")
if hasattr(e, 'response') and e.response is not None:
logger.error(f"Response status: {e.response.status_code}")
logger.error(f"Response body: {e.response.text}")
return f"API Error: {str(e)}. Using free tier? Try adding an API token."
except Exception as e:
logger.error(f"Unexpected error: {e}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
return f"Error: {str(e)}. Please check logs for details."
def _extract_citations(self, answer: str, chunks: List[Dict[str, Any]]) -> Tuple[str, List[Citation]]:
"""
Extract citations from the generated answer and integrate them naturally.
Args:
answer: Generated answer with [chunk_X] citations
chunks: Original chunks used for context
Returns:
Tuple of (natural_answer, citations)
"""
citations = []
citation_pattern = r'\[chunk_(\d+)\]'
cited_chunks = set()
# Find [chunk_X] citations and collect cited chunks
matches = re.finditer(citation_pattern, answer)
for match in matches:
chunk_idx = int(match.group(1)) - 1 # Convert to 0-based index
if 0 <= chunk_idx < len(chunks):
cited_chunks.add(chunk_idx)
# FALLBACK: If no explicit citations found but we have an answer and chunks,
# create citations for the top chunks that were likely used
if not cited_chunks and chunks and len(answer.strip()) > 50:
# Use the top chunks that were provided as likely sources
num_fallback_citations = min(3, len(chunks)) # Use top 3 chunks max
cited_chunks = set(range(num_fallback_citations))
print(f"π§ HF Fallback: Creating {num_fallback_citations} citations for answer without explicit [chunk_X] references", file=sys.stderr, flush=True)
# Create Citation objects for each cited chunk
chunk_to_source = {}
for idx in cited_chunks:
chunk = chunks[idx]
citation = Citation(
chunk_id=chunk.get('id', f'chunk_{idx}'),
page_number=chunk.get('metadata', {}).get('page_number', 0),
source_file=chunk.get('metadata', {}).get('source', 'unknown'),
relevance_score=chunk.get('score', 0.0),
text_snippet=chunk.get('content', chunk.get('text', ''))[:200] + '...'
)
citations.append(citation)
# Map chunk reference to natural source name
source_name = chunk.get('metadata', {}).get('source', 'unknown')
if source_name != 'unknown':
# Use just the filename without extension for natural reference
natural_name = Path(source_name).stem.replace('-', ' ').replace('_', ' ')
chunk_to_source[f'[chunk_{idx+1}]'] = f"the {natural_name} documentation"
else:
chunk_to_source[f'[chunk_{idx+1}]'] = "the documentation"
# Replace [chunk_X] with natural references instead of removing them
natural_answer = answer
for chunk_ref, natural_ref in chunk_to_source.items():
natural_answer = natural_answer.replace(chunk_ref, natural_ref)
# Clean up any remaining unreferenced citations (fallback)
natural_answer = re.sub(r'\[chunk_\d+\]', 'the documentation', natural_answer)
# Clean up multiple spaces and formatting
natural_answer = re.sub(r'\s+', ' ', natural_answer).strip()
return natural_answer, citations
def _calculate_confidence(self, answer: str, citations: List[Citation], chunks: List[Dict[str, Any]]) -> float:
"""
Calculate confidence score for the generated answer.
Args:
answer: Generated answer
citations: Extracted citations
chunks: Retrieved chunks
Returns:
Confidence score (0.0-1.0)
"""
if not chunks:
return 0.05 # No context = very low confidence
# Base confidence from context quality
scores = [chunk.get('score', 0) for chunk in chunks]
max_relevance = max(scores) if scores else 0
if max_relevance >= 0.8:
confidence = 0.7 # High-quality context
elif max_relevance >= 0.6:
confidence = 0.5 # Good context
elif max_relevance >= 0.4:
confidence = 0.3 # Fair context
else:
confidence = 0.1 # Poor context
# Uncertainty indicators
uncertainty_phrases = [
"does not contain sufficient information",
"context does not provide",
"insufficient information",
"cannot determine",
"not available in the provided documents"
]
if any(phrase in answer.lower() for phrase in uncertainty_phrases):
return min(0.15, confidence * 0.3)
# Citation bonus
if citations and chunks:
citation_ratio = len(citations) / min(len(chunks), 3)
confidence += 0.2 * citation_ratio
return min(confidence, 0.9) # Cap at 90%
def generate(
self,
query: str,
chunks: List[Dict[str, Any]]
) -> GeneratedAnswer:
"""
Generate an answer based on the query and retrieved chunks.
Args:
query: User's question
chunks: Retrieved document chunks
Returns:
GeneratedAnswer object with answer, citations, and metadata
"""
start_time = datetime.now()
# Check for no-context situation
if not chunks or all(len(chunk.get('content', chunk.get('text', ''))) < 20 for chunk in chunks):
return GeneratedAnswer(
answer="This information isn't available in the provided documents.",
citations=[],
confidence_score=0.05,
generation_time=0.1,
model_used=self.model_name,
context_used=chunks
)
# Format context from chunks
context = self._format_context(chunks)
# Create prompt using TechnicalPromptTemplates for consistency
prompt_data = TechnicalPromptTemplates.format_prompt_with_template(
query=query,
context=context
)
# Format for specific model types
if "squad" in self.model_name.lower() or "roberta" in self.model_name.lower():
# Squad2 uses special question/context format - handled in _call_api
prompt = f"Context: {context}\n\nQuestion: {query}"
elif "gpt2" in self.model_name.lower() or "distilgpt2" in self.model_name.lower():
# Simple completion style for GPT-2
prompt = f"""{prompt_data['system']}
{prompt_data['user']}
MANDATORY: Use [chunk_1], [chunk_2] etc. for all facts.
Answer:"""
elif "llama" in self.model_name.lower():
# Llama-2 chat format with technical templates
prompt = f"""[INST] {prompt_data['system']}
{prompt_data['user']}
MANDATORY: Use [chunk_1], [chunk_2] etc. for all facts. [/INST]"""
elif "mistral" in self.model_name.lower():
# Mistral instruction format with technical templates
prompt = f"""[INST] {prompt_data['system']}
{prompt_data['user']}
MANDATORY: Use [chunk_1], [chunk_2] etc. for all facts. [/INST]"""
elif "codellama" in self.model_name.lower():
# CodeLlama instruction format with technical templates
prompt = f"""[INST] {prompt_data['system']}
{prompt_data['user']}
MANDATORY: Use [chunk_1], [chunk_2] etc. for all facts. [/INST]"""
elif "distilbart" in self.model_name.lower():
# DistilBART is a summarization model - simpler prompt works better
prompt = f"""Technical Documentation Context:
{context}
Question: {query}
Instructions: Provide a technical answer using only the context above. Include source citations."""
else:
# Default instruction prompt with technical templates
prompt = f"""{prompt_data['system']}
{prompt_data['user']}
MANDATORY: Use [chunk_1], [chunk_2] etc. for all factual statements.
Answer:"""
# Generate response
try:
answer_with_citations = self._call_api(prompt)
# Extract and clean citations
clean_answer, citations = self._extract_citations(answer_with_citations, chunks)
# Calculate confidence
confidence = self._calculate_confidence(clean_answer, citations, chunks)
# Calculate generation time
generation_time = (datetime.now() - start_time).total_seconds()
return GeneratedAnswer(
answer=clean_answer,
citations=citations,
confidence_score=confidence,
generation_time=generation_time,
model_used=self.model_name,
context_used=chunks
)
except Exception as e:
logger.error(f"Error generating answer: {e}")
return GeneratedAnswer(
answer="I apologize, but I encountered an error while generating the answer. Please try again.",
citations=[],
confidence_score=0.0,
generation_time=0.0,
model_used=self.model_name,
context_used=chunks
)
def format_answer_with_citations(self, generated_answer: GeneratedAnswer) -> str:
"""
Format the generated answer with citations for display.
Args:
generated_answer: GeneratedAnswer object
Returns:
Formatted string with answer and citations
"""
formatted = f"{generated_answer.answer}\n\n"
if generated_answer.citations:
formatted += "**Sources:**\n"
for i, citation in enumerate(generated_answer.citations, 1):
formatted += f"{i}. {citation.source_file} (Page {citation.page_number})\n"
formatted += f"\n*Confidence: {generated_answer.confidence_score:.1%} | "
formatted += f"Model: {generated_answer.model_used} | "
formatted += f"Time: {generated_answer.generation_time:.2f}s*"
return formatted
if __name__ == "__main__":
# Example usage
generator = HuggingFaceAnswerGenerator()
# Example chunks (would come from retrieval system)
example_chunks = [
{
"id": "chunk_1",
"content": "RISC-V is an open-source instruction set architecture (ISA) based on reduced instruction set computer (RISC) principles.",
"metadata": {"page_number": 1, "source": "riscv-spec.pdf"},
"score": 0.95
}
]
# Generate answer
result = generator.generate(
query="What is RISC-V?",
chunks=example_chunks
)
# Display formatted result
print(generator.format_answer_with_citations(result)) |