Spaces:
Running
Running
File size: 14,864 Bytes
9f5e57c 269cfe9 9f5e57c 269cfe9 9f5e57c 269cfe9 9f5e57c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
#!/usr/bin/env python3
"""
Technical Documentation RAG System - Streamlit Interface
A professional web interface for the RAG system with answer generation,
optimized for technical documentation Q&A.
"""
import streamlit as st
import sys
from pathlib import Path
import time
import traceback
from typing import List, Dict, Any
import json
# Add project root to path
project_root = Path(__file__).parent.parent
sys.path.insert(0, str(project_root))
# Import directly since we're in the project directory
sys.path.insert(0, str(Path(__file__).parent))
from src.rag_with_generation import RAGWithGeneration
# Page configuration
st.set_page_config(
page_title="Technical Documentation RAG Assistant",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for professional styling
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
font-weight: bold;
color: #1f77b4;
text-align: center;
margin-bottom: 2rem;
}
.metric-container {
background-color: #f0f2f6;
padding: 1rem;
border-radius: 0.5rem;
margin: 0.5rem 0;
}
.citation-box {
background-color: #e8f4f8;
border-left: 4px solid #1f77b4;
padding: 1rem;
margin: 0.5rem 0;
border-radius: 0.25rem;
}
.answer-box {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 0.5rem;
padding: 1.5rem;
margin: 1rem 0;
}
.error-box {
background-color: #f8d7da;
border: 1px solid #f5c6cb;
color: #721c24;
padding: 1rem;
border-radius: 0.5rem;
margin: 1rem 0;
}
.success-box {
background-color: #d4edda;
border: 1px solid #c3e6cb;
color: #155724;
padding: 1rem;
border-radius: 0.5rem;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def initialize_rag_system():
"""Initialize the RAG system with caching."""
try:
rag = RAGWithGeneration(
primary_model="llama3.2:3b",
temperature=0.3,
enable_streaming=True
)
return rag, None
except Exception as e:
return None, str(e)
def display_header():
"""Display the main header and description."""
st.markdown('<h1 class="main-header">π Technical Documentation RAG Assistant</h1>', unsafe_allow_html=True)
st.markdown("""
**Intelligent Q&A System for Technical Documentation**
This system uses advanced hybrid search (semantic + keyword matching) combined with local LLM generation
to provide accurate, cited answers from your technical documentation.
**Features:**
- π Hybrid retrieval for optimal relevance
- π Automatic citation and source attribution
- π― Confidence scoring for answer quality
- β‘ Local LLM for privacy and speed
""")
def display_system_status(rag_system):
"""Display system status and metrics."""
if rag_system is None:
return
with st.sidebar:
st.header("π System Status")
# Check if documents are indexed
if hasattr(rag_system, 'chunks') and rag_system.chunks:
st.success(f"β
{len(rag_system.chunks)} chunks indexed")
# Show document sources
sources = set(chunk.get('source', 'unknown') for chunk in rag_system.chunks)
st.info(f"π {len(sources)} documents loaded")
with st.expander("Document Details"):
for source in sorted(sources):
source_name = Path(source).name if source != 'unknown' else source
chunk_count = len([c for c in rag_system.chunks if c.get('source') == source])
st.write(f"β’ {source_name}: {chunk_count} chunks")
else:
st.warning("β οΈ No documents indexed")
st.info("Upload a PDF to get started")
# Model information
st.header("π€ Model Info")
st.write(f"**Primary:** llama3.2:3b")
st.write(f"**Fallback:** mistral:latest")
st.write(f"**Temperature:** 0.3")
def handle_document_upload(rag_system):
"""Handle PDF document upload and indexing."""
st.header("π Document Management")
uploaded_file = st.file_uploader(
"Upload PDF Document",
type="pdf",
help="Upload a technical PDF document to add to the knowledge base"
)
if uploaded_file is not None:
if st.button("Index Document", type="primary"):
try:
with st.spinner("Processing document..."):
# Save uploaded file temporarily
temp_path = Path(f"/tmp/{uploaded_file.name}")
with open(temp_path, "wb") as f:
f.write(uploaded_file.getvalue())
# Index the document
start_time = time.time()
chunk_count = rag_system.index_document(temp_path)
processing_time = time.time() - start_time
# Clean up temp file
temp_path.unlink()
st.markdown(f"""
<div class="success-box">
β
<strong>Document indexed successfully!</strong><br>
π {chunk_count} chunks created in {processing_time:.2f}s<br>
π Ready for queries
</div>
""", unsafe_allow_html=True)
# Refresh the page to update sidebar
st.rerun()
except Exception as e:
st.markdown(f"""
<div class="error-box">
β <strong>Error processing document:</strong><br>
{str(e)}
</div>
""", unsafe_allow_html=True)
def handle_query_interface(rag_system):
"""Handle the main query interface."""
st.header("π€ Ask Your Question")
# Check if documents are available
if not hasattr(rag_system, 'chunks') or not rag_system.chunks:
st.warning("Please upload and index a document first to ask questions.")
return
# Query input
query = st.text_input(
"Enter your question:",
placeholder="e.g., What is RISC-V? How does instruction encoding work?",
help="Ask any question about the uploaded technical documentation"
)
# Advanced options
with st.expander("βοΈ Advanced Options"):
col1, col2 = st.columns(2)
with col1:
use_hybrid = st.checkbox("Use Hybrid Search", value=True, help="Combine semantic and keyword search")
dense_weight = st.slider("Semantic Weight", 0.0, 1.0, 0.7, 0.1, help="Weight for semantic search (vs keyword)")
with col2:
top_k = st.slider("Number of Sources", 1, 10, 5, help="Number of source chunks to retrieve")
use_fallback_llm = st.checkbox("Use Fallback Model", value=False, help="Use larger model for complex queries")
# Query processing
if query and st.button("Get Answer", type="primary"):
try:
with st.spinner("Searching and generating answer..."):
start_time = time.time()
# Get answer
result = rag_system.query_with_answer(
question=query,
top_k=top_k,
use_hybrid=use_hybrid,
dense_weight=dense_weight,
use_fallback_llm=use_fallback_llm,
return_context=True
)
total_time = time.time() - start_time
# Display results
display_answer_results(result, total_time)
except Exception as e:
st.markdown(f"""
<div class="error-box">
β <strong>Error generating answer:</strong><br>
{str(e)}
</div>
""", unsafe_allow_html=True)
# Show detailed error in expander for debugging
with st.expander("π Error Details"):
st.code(traceback.format_exc())
def display_answer_results(result: Dict[str, Any], total_time: float):
"""Display the answer results in a formatted way."""
# Main answer
st.markdown(f"""
<div class="answer-box">
<h3>π Answer</h3>
{result['answer']}
</div>
""", unsafe_allow_html=True)
# Metrics row
col1, col2, col3, col4 = st.columns(4)
with col1:
confidence_color = "green" if result['confidence'] > 0.8 else "orange" if result['confidence'] > 0.6 else "red"
st.metric("Confidence", f"{result['confidence']:.1%}", delta_color=confidence_color)
with col2:
st.metric("Sources", len(result['citations']))
with col3:
st.metric("Total Time", f"{total_time:.2f}s")
with col4:
retrieval_method = result.get('retrieval_stats', {}).get('method', 'unknown')
st.metric("Method", retrieval_method)
# Citations
if result['citations']:
st.markdown("### π Sources")
for i, citation in enumerate(result['citations'], 1):
st.markdown(f"""
<div class="citation-box">
<strong>{i}. {citation['source']}</strong> (Page {citation['page']})<br>
<small>Relevance: {citation['relevance']:.1%}</small><br>
<em>"{citation['snippet']}"</em>
</div>
""", unsafe_allow_html=True)
# Detailed metrics
with st.expander("π Detailed Metrics"):
col1, col2 = st.columns(2)
with col1:
st.subheader("Retrieval Stats")
retrieval_stats = result.get('retrieval_stats', {})
st.json(retrieval_stats)
with col2:
st.subheader("Generation Stats")
generation_stats = result.get('generation_stats', {})
st.json(generation_stats)
# Context chunks (for debugging)
if 'context' in result and st.checkbox("Show Retrieved Context"):
st.subheader("π Retrieved Context")
for i, chunk in enumerate(result['context'], 1):
with st.expander(f"Chunk {i} - {Path(chunk.get('source', 'unknown')).name} (Page {chunk.get('page', 'unknown')})"):
st.write(f"**Score:** {chunk.get('hybrid_score', chunk.get('similarity_score', 0)):.3f}")
st.write(f"**Text:** {chunk.get('text', '')[:500]}...")
def display_sample_queries():
"""Display sample queries for user guidance."""
st.header("π‘ Sample Queries")
sample_queries = [
"What is RISC-V and what are its main features?",
"How does the RISC-V instruction encoding work?",
"What are the differences between RV32I and RV64I?",
"Explain the RISC-V register model and naming conventions",
"How does RISC-V handle memory ordering and consistency?",
"What are the RISC-V privileged instruction set features?",
"How do atomic instructions work in RISC-V?",
"What is the RISC-V calling convention?"
]
for query in sample_queries:
if st.button(f"π {query}", key=f"sample_{hash(query)}"):
st.session_state['sample_query'] = query
st.rerun()
def main():
"""Main Streamlit application."""
# Initialize session state
if 'rag_system' not in st.session_state:
st.session_state['rag_system'] = None
st.session_state['init_error'] = None
# Display header
display_header()
# Initialize RAG system
if st.session_state['rag_system'] is None:
with st.spinner("Initializing RAG system..."):
rag_system, error = initialize_rag_system()
st.session_state['rag_system'] = rag_system
st.session_state['init_error'] = error
rag_system = st.session_state['rag_system']
init_error = st.session_state['init_error']
# Check for initialization errors
if init_error:
st.markdown(f"""
<div class="error-box">
β <strong>Failed to initialize RAG system:</strong><br>
{init_error}<br><br>
<strong>Please ensure:</strong><br>
β’ Ollama is running (run <code>ollama serve</code>)<br>
β’ Llama 3.2 model is available (run <code>ollama pull llama3.2:3b</code>)
</div>
""", unsafe_allow_html=True)
return
if rag_system is None:
st.error("Failed to initialize RAG system. Please check the logs.")
return
# Display system status in sidebar
display_system_status(rag_system)
# Main interface
tab1, tab2, tab3 = st.tabs(["π€ Ask Questions", "π Manage Documents", "π‘ Examples"])
with tab1:
# Handle sample query selection
if 'sample_query' in st.session_state:
st.text_input(
"Enter your question:",
value=st.session_state['sample_query'],
key="main_query"
)
del st.session_state['sample_query']
handle_query_interface(rag_system)
with tab2:
handle_document_upload(rag_system)
# Option to load test document
st.subheader("π Test Document")
test_pdf_path = Path("data/test/riscv-base-instructions.pdf")
if test_pdf_path.exists():
if st.button("Load RISC-V Test Document"):
try:
with st.spinner("Loading test document..."):
chunk_count = rag_system.index_document(test_pdf_path)
st.success(f"β
Test document loaded! {chunk_count} chunks indexed.")
st.rerun()
except Exception as e:
st.error(f"Failed to load test document: {e}")
else:
st.info("Test document not found at data/test/riscv-base-instructions.pdf")
with tab3:
display_sample_queries()
# Footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; color: #666; font-size: 0.9rem;">
Technical Documentation RAG Assistant | Powered by Llama 3.2 & RISC-V Documentation<br>
Built for ML Engineer Portfolio | Swiss Tech Market Focus
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |