technical-rag-assistant / src /shared_utils /generation /inference_providers_generator.py
Arthur Passuello
Trying API based soltuion
741bf73
#!/usr/bin/env python3
"""
HuggingFace Inference Providers API-based answer generation.
This module provides answer generation using HuggingFace's new Inference Providers API,
which offers OpenAI-compatible chat completion format for better reliability and consistency.
"""
import os
import sys
import logging
import time
from datetime import datetime
from typing import List, Dict, Any, Optional, Tuple
from pathlib import Path
import re
# Import shared components
from .hf_answer_generator import Citation, GeneratedAnswer
from .prompt_templates import TechnicalPromptTemplates
# Check if huggingface_hub is new enough for InferenceClient chat completion
try:
from huggingface_hub import InferenceClient
from huggingface_hub import __version__ as hf_hub_version
print(f"πŸ” Using huggingface_hub version: {hf_hub_version}", file=sys.stderr, flush=True)
except ImportError:
print("❌ huggingface_hub not found or outdated. Please install: pip install -U huggingface-hub", file=sys.stderr, flush=True)
raise
logger = logging.getLogger(__name__)
class InferenceProvidersGenerator:
"""
Generates answers using HuggingFace Inference Providers API.
This uses the new OpenAI-compatible chat completion format for better reliability
compared to the classic Inference API. It provides:
- Consistent response format across models
- Better error handling and retry logic
- Support for streaming responses
- Automatic provider selection and failover
"""
# Models that work well with chat completion format
CHAT_MODELS = [
"microsoft/DialoGPT-medium", # Proven conversational model
"google/gemma-2-2b-it", # Instruction-tuned, good for Q&A
"meta-llama/Llama-3.2-3B-Instruct", # If available with token
"Qwen/Qwen2.5-1.5B-Instruct", # Small, fast, good quality
]
# Fallback to classic API models if chat completion fails
CLASSIC_FALLBACK_MODELS = [
"google/flan-t5-small", # Good for instructions
"deepset/roberta-base-squad2", # Q&A specific
"facebook/bart-base", # Summarization
]
def __init__(
self,
model_name: Optional[str] = None,
api_token: Optional[str] = None,
temperature: float = 0.3,
max_tokens: int = 512,
timeout: int = 30
):
"""
Initialize the Inference Providers answer generator.
Args:
model_name: Model to use (defaults to first available chat model)
api_token: HF API token (uses env vars if not provided)
temperature: Generation temperature (0.0-1.0)
max_tokens: Maximum tokens to generate
timeout: Request timeout in seconds
"""
# Get API token from various sources
self.api_token = (
api_token or
os.getenv("HUGGINGFACE_API_TOKEN") or
os.getenv("HF_TOKEN") or
os.getenv("HF_API_TOKEN")
)
if not self.api_token:
print("⚠️ No HF API token found. Inference Providers requires authentication.", file=sys.stderr, flush=True)
print("Set HF_TOKEN, HUGGINGFACE_API_TOKEN, or HF_API_TOKEN environment variable.", file=sys.stderr, flush=True)
raise ValueError("HuggingFace API token required for Inference Providers")
print(f"βœ… Found HF token (starts with: {self.api_token[:8]}...)", file=sys.stderr, flush=True)
# Initialize client with token
self.client = InferenceClient(token=self.api_token)
self.temperature = temperature
self.max_tokens = max_tokens
self.timeout = timeout
# Select model
self.model_name = model_name or self.CHAT_MODELS[0]
self.using_chat_completion = True
print(f"πŸš€ Initialized Inference Providers with model: {self.model_name}", file=sys.stderr, flush=True)
# Test the connection
self._test_connection()
def _test_connection(self):
"""Test if the API is accessible and model is available."""
print(f"πŸ”§ Testing Inference Providers API connection...", file=sys.stderr, flush=True)
try:
# Try a simple test query
test_messages = [
{"role": "user", "content": "Hello"}
]
# First try chat completion (preferred)
try:
response = self.client.chat_completion(
messages=test_messages,
model=self.model_name,
max_tokens=10,
temperature=0.1
)
print(f"βœ… Chat completion API working with {self.model_name}", file=sys.stderr, flush=True)
self.using_chat_completion = True
return
except Exception as e:
print(f"⚠️ Chat completion failed for {self.model_name}: {e}", file=sys.stderr, flush=True)
# Try other chat models
for model in self.CHAT_MODELS:
if model != self.model_name:
try:
print(f"πŸ”„ Trying {model}...", file=sys.stderr, flush=True)
response = self.client.chat_completion(
messages=test_messages,
model=model,
max_tokens=10
)
print(f"βœ… Found working model: {model}", file=sys.stderr, flush=True)
self.model_name = model
self.using_chat_completion = True
return
except:
continue
# If chat completion fails, test classic text generation
print("πŸ”„ Falling back to classic text generation API...", file=sys.stderr, flush=True)
for model in self.CLASSIC_FALLBACK_MODELS:
try:
response = self.client.text_generation(
model=model,
prompt="Hello",
max_new_tokens=10
)
print(f"βœ… Classic API working with fallback model: {model}", file=sys.stderr, flush=True)
self.model_name = model
self.using_chat_completion = False
return
except:
continue
raise Exception("No working models found in Inference Providers API")
except Exception as e:
print(f"❌ Inference Providers API test failed: {e}", file=sys.stderr, flush=True)
raise
def _format_context(self, chunks: List[Dict[str, Any]]) -> str:
"""Format retrieved chunks into context string."""
context_parts = []
for i, chunk in enumerate(chunks):
chunk_text = chunk.get('content', chunk.get('text', ''))
page_num = chunk.get('metadata', {}).get('page_number', 'unknown')
source = chunk.get('metadata', {}).get('source', 'unknown')
context_parts.append(
f"[chunk_{i+1}] (Page {page_num} from {source}):\n{chunk_text}\n"
)
return "\n---\n".join(context_parts)
def _create_messages(self, query: str, context: str) -> List[Dict[str, str]]:
"""Create chat messages using TechnicalPromptTemplates."""
# Get appropriate template based on query type
prompt_data = TechnicalPromptTemplates.format_prompt_with_template(
query=query,
context=context
)
# Create messages for chat completion
messages = [
{
"role": "system",
"content": prompt_data['system'] + "\n\nMANDATORY: Use [chunk_X] citations for all facts."
},
{
"role": "user",
"content": prompt_data['user']
}
]
return messages
def _call_chat_completion(self, messages: List[Dict[str, str]]) -> str:
"""Call the chat completion API."""
try:
print(f"πŸ€– Calling Inference Providers chat completion with {self.model_name}...", file=sys.stderr, flush=True)
# Use chat completion with proper error handling
response = self.client.chat_completion(
messages=messages,
model=self.model_name,
temperature=self.temperature,
max_tokens=self.max_tokens,
stream=False
)
# Extract content from response
if hasattr(response, 'choices') and response.choices:
content = response.choices[0].message.content
print(f"βœ… Got response: {len(content)} characters", file=sys.stderr, flush=True)
return content
else:
print(f"⚠️ Unexpected response format: {response}", file=sys.stderr, flush=True)
return str(response)
except Exception as e:
print(f"❌ Chat completion error: {e}", file=sys.stderr, flush=True)
# Try with a fallback model
if self.model_name != "microsoft/DialoGPT-medium":
print("πŸ”„ Trying fallback model: microsoft/DialoGPT-medium", file=sys.stderr, flush=True)
try:
response = self.client.chat_completion(
messages=messages,
model="microsoft/DialoGPT-medium",
temperature=self.temperature,
max_tokens=self.max_tokens
)
if hasattr(response, 'choices') and response.choices:
return response.choices[0].message.content
except:
pass
raise Exception(f"Chat completion failed: {e}")
def _call_classic_api(self, query: str, context: str) -> str:
"""Fallback to classic text generation API."""
print(f"πŸ”„ Using classic text generation with {self.model_name}...", file=sys.stderr, flush=True)
# Format prompt for classic API
if "squad" in self.model_name.lower():
# Q&A format for squad models
prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
elif "flan" in self.model_name.lower():
# Instruction format for Flan models
prompt = f"Answer the question based on the context.\n\nContext: {context}\n\nQuestion: {query}\n\nAnswer:"
else:
# Generic format
prompt = f"Based on the following context, answer the question.\n\nContext:\n{context}\n\nQuestion: {query}\n\nAnswer:"
try:
response = self.client.text_generation(
model=self.model_name,
prompt=prompt,
max_new_tokens=self.max_tokens,
temperature=self.temperature
)
return response
except Exception as e:
print(f"❌ Classic API error: {e}", file=sys.stderr, flush=True)
return f"Error generating response: {str(e)}"
def _extract_citations(self, answer: str, chunks: List[Dict[str, Any]]) -> Tuple[str, List[Citation]]:
"""Extract citations from the answer."""
citations = []
citation_pattern = r'\[chunk_(\d+)\]'
cited_chunks = set()
# Find explicit citations
matches = re.finditer(citation_pattern, answer)
for match in matches:
chunk_idx = int(match.group(1)) - 1
if 0 <= chunk_idx < len(chunks):
cited_chunks.add(chunk_idx)
# Fallback: Create citations for top chunks if none found
if not cited_chunks and chunks and len(answer.strip()) > 50:
num_fallback = min(3, len(chunks))
cited_chunks = set(range(num_fallback))
print(f"πŸ”§ Creating {num_fallback} fallback citations", file=sys.stderr, flush=True)
# Create Citation objects
chunk_to_source = {}
for idx in cited_chunks:
chunk = chunks[idx]
citation = Citation(
chunk_id=chunk.get('id', f'chunk_{idx}'),
page_number=chunk.get('metadata', {}).get('page_number', 0),
source_file=chunk.get('metadata', {}).get('source', 'unknown'),
relevance_score=chunk.get('score', 0.0),
text_snippet=chunk.get('content', chunk.get('text', ''))[:200] + '...'
)
citations.append(citation)
# Map for natural language replacement
source_name = chunk.get('metadata', {}).get('source', 'unknown')
if source_name != 'unknown':
natural_name = Path(source_name).stem.replace('-', ' ').replace('_', ' ')
chunk_to_source[f'[chunk_{idx+1}]'] = f"the {natural_name} documentation"
else:
chunk_to_source[f'[chunk_{idx+1}]'] = "the documentation"
# Replace citations with natural language
natural_answer = answer
for chunk_ref, natural_ref in chunk_to_source.items():
natural_answer = natural_answer.replace(chunk_ref, natural_ref)
# Clean up any remaining citations
natural_answer = re.sub(r'\[chunk_\d+\]', 'the documentation', natural_answer)
natural_answer = re.sub(r'\s+', ' ', natural_answer).strip()
return natural_answer, citations
def _calculate_confidence(self, answer: str, citations: List[Citation], chunks: List[Dict[str, Any]]) -> float:
"""Calculate confidence score for the answer."""
if not answer or len(answer.strip()) < 10:
return 0.1
# Base confidence from chunk quality
if len(chunks) >= 3:
confidence = 0.8
elif len(chunks) >= 2:
confidence = 0.7
else:
confidence = 0.6
# Citation bonus
if citations and chunks:
citation_ratio = len(citations) / min(len(chunks), 3)
confidence += 0.15 * citation_ratio
# Check for uncertainty phrases
uncertainty_phrases = [
"insufficient information",
"cannot determine",
"not available in the provided documents",
"i don't know",
"unclear"
]
if any(phrase in answer.lower() for phrase in uncertainty_phrases):
confidence *= 0.3
return min(confidence, 0.95)
def generate(self, query: str, chunks: List[Dict[str, Any]]) -> GeneratedAnswer:
"""
Generate an answer using Inference Providers API.
Args:
query: User's question
chunks: Retrieved document chunks
Returns:
GeneratedAnswer with answer, citations, and metadata
"""
start_time = datetime.now()
# Check for no-context situation
if not chunks or all(len(chunk.get('content', chunk.get('text', ''))) < 20 for chunk in chunks):
return GeneratedAnswer(
answer="This information isn't available in the provided documents.",
citations=[],
confidence_score=0.05,
generation_time=0.1,
model_used=self.model_name,
context_used=chunks
)
# Format context
context = self._format_context(chunks)
# Generate answer
try:
if self.using_chat_completion:
# Create chat messages
messages = self._create_messages(query, context)
# Call chat completion API
answer_text = self._call_chat_completion(messages)
else:
# Fallback to classic API
answer_text = self._call_classic_api(query, context)
# Extract citations and clean answer
natural_answer, citations = self._extract_citations(answer_text, chunks)
# Calculate confidence
confidence = self._calculate_confidence(natural_answer, citations, chunks)
generation_time = (datetime.now() - start_time).total_seconds()
return GeneratedAnswer(
answer=natural_answer,
citations=citations,
confidence_score=confidence,
generation_time=generation_time,
model_used=self.model_name,
context_used=chunks
)
except Exception as e:
logger.error(f"Error generating answer: {e}")
print(f"❌ Generation failed: {e}", file=sys.stderr, flush=True)
# Return error response
return GeneratedAnswer(
answer="I apologize, but I encountered an error while generating the answer. Please try again.",
citations=[],
confidence_score=0.0,
generation_time=(datetime.now() - start_time).total_seconds(),
model_used=self.model_name,
context_used=chunks
)
# Example usage
if __name__ == "__main__":
# Test the generator
print("Testing Inference Providers Generator...")
try:
generator = InferenceProvidersGenerator()
# Test chunks
test_chunks = [
{
"content": "RISC-V is an open-source instruction set architecture (ISA) based on established reduced instruction set computer (RISC) principles.",
"metadata": {"page_number": 1, "source": "riscv-spec.pdf"},
"score": 0.95
},
{
"content": "Unlike most other ISA designs, RISC-V is provided under open source licenses that do not require fees to use.",
"metadata": {"page_number": 2, "source": "riscv-spec.pdf"},
"score": 0.85
}
]
# Generate answer
result = generator.generate("What is RISC-V and why is it important?", test_chunks)
print(f"\nπŸ“ Answer: {result.answer}")
print(f"πŸ“Š Confidence: {result.confidence_score:.1%}")
print(f"⏱️ Generation time: {result.generation_time:.2f}s")
print(f"πŸ€– Model: {result.model_used}")
print(f"πŸ“š Citations: {len(result.citations)}")
except Exception as e:
print(f"❌ Test failed: {e}")
import traceback
traceback.print_exc()