Arthur Passuello
Fixed text display and set relevance threshold
1f4f2f0
"""
Hybrid retrieval combining dense semantic search with sparse BM25 keyword matching.
Uses Reciprocal Rank Fusion (RRF) to combine results from both approaches.
"""
from typing import List, Dict, Tuple, Optional
import numpy as np
from pathlib import Path
import sys
# Add project root to Python path for imports
project_root = Path(__file__).parent.parent.parent / "project-1-technical-rag"
sys.path.append(str(project_root))
from src.sparse_retrieval import BM25SparseRetriever
from src.fusion import reciprocal_rank_fusion, adaptive_fusion
from src.shared_utils.embeddings.generator import generate_embeddings
import faiss
class HybridRetriever:
"""
Hybrid retrieval system combining dense semantic search with sparse BM25.
Optimized for technical documentation where both semantic similarity
and exact keyword matching are important for retrieval quality.
Performance: Sub-second search on 1000+ document corpus
"""
def __init__(
self,
dense_weight: float = 0.7,
embedding_model: str = "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
use_mps: bool = True,
bm25_k1: float = 1.2,
bm25_b: float = 0.75,
rrf_k: int = 10
):
"""
Initialize hybrid retriever with dense and sparse components.
Args:
dense_weight: Weight for semantic similarity in fusion (0.7 default)
embedding_model: Sentence transformer model name
use_mps: Use Apple Silicon MPS acceleration for embeddings
bm25_k1: BM25 term frequency saturation parameter
bm25_b: BM25 document length normalization parameter
rrf_k: Reciprocal Rank Fusion constant (1=strong rank preference, 2=moderate)
Raises:
ValueError: If parameters are invalid
"""
if not 0 <= dense_weight <= 1:
raise ValueError("dense_weight must be between 0 and 1")
self.dense_weight = dense_weight
self.embedding_model = embedding_model
self.use_mps = use_mps
self.rrf_k = rrf_k
# Initialize sparse retriever
self.sparse_retriever = BM25SparseRetriever(k1=bm25_k1, b=bm25_b)
# Dense retrieval components (initialized on first index)
self.dense_index: Optional[faiss.Index] = None
self.chunks: List[Dict] = []
self.embeddings: Optional[np.ndarray] = None
def index_documents(self, chunks: List[Dict]) -> None:
"""
Index documents for both dense and sparse retrieval.
Args:
chunks: List of chunk dictionaries with 'text' field
Raises:
ValueError: If chunks is empty or malformed
Performance: ~100 chunks/second for complete indexing
"""
if not chunks:
raise ValueError("Cannot index empty chunk list")
print(f"Indexing {len(chunks)} chunks for hybrid retrieval...")
# Store chunks for retrieval
self.chunks = chunks
# Index for sparse retrieval
print("Building BM25 sparse index...")
self.sparse_retriever.index_documents(chunks)
# Index for dense retrieval
print("Building dense semantic index...")
texts = [chunk['text'] for chunk in chunks]
# Generate embeddings
self.embeddings = generate_embeddings(
texts,
model_name=self.embedding_model,
use_mps=self.use_mps
)
# Create FAISS index
embedding_dim = self.embeddings.shape[1]
self.dense_index = faiss.IndexFlatIP(embedding_dim) # Inner product for cosine similarity
# Normalize embeddings for cosine similarity
faiss.normalize_L2(self.embeddings)
self.dense_index.add(self.embeddings)
print(f"Hybrid indexing complete: {len(chunks)} chunks ready for search")
def search(
self,
query: str,
top_k: int = 10,
dense_top_k: Optional[int] = None,
sparse_top_k: Optional[int] = None,
similarity_threshold: float = 0.3
) -> List[Tuple[int, float, Dict]]:
"""
Hybrid search combining dense and sparse retrieval with RRF.
Args:
query: Search query string
top_k: Final number of results to return
dense_top_k: Results from dense search (default: 2*top_k)
sparse_top_k: Results from sparse search (default: 2*top_k)
similarity_threshold: Minimum similarity score to include results (0.3 = 30%)
Returns:
List of (chunk_index, rrf_score, chunk_dict) tuples
Raises:
ValueError: If not indexed or invalid parameters
Performance: <200ms for 1000+ document corpus
"""
if self.dense_index is None:
raise ValueError("Must call index_documents() before searching")
if not query.strip():
return []
if top_k <= 0:
raise ValueError("top_k must be positive")
# Set default intermediate result counts
if dense_top_k is None:
dense_top_k = min(2 * top_k, len(self.chunks))
if sparse_top_k is None:
sparse_top_k = min(2 * top_k, len(self.chunks))
# Dense semantic search with similarity filtering
dense_results = self._dense_search(query, dense_top_k, similarity_threshold)
# Sparse BM25 search
sparse_results = self.sparse_retriever.search(query, sparse_top_k)
# Combine using Adaptive Fusion (better for small result sets)
fused_results = adaptive_fusion(
dense_results=dense_results,
sparse_results=sparse_results,
dense_weight=self.dense_weight,
result_size=top_k
)
# Prepare final results with chunk content and apply source diversity
final_results = []
for chunk_idx, rrf_score in fused_results:
chunk_dict = self.chunks[chunk_idx]
final_results.append((chunk_idx, rrf_score, chunk_dict))
# Apply source diversity enhancement
diverse_results = self._enhance_source_diversity(final_results, top_k)
return diverse_results
def _dense_search(self, query: str, top_k: int, similarity_threshold: float = 0.3) -> List[Tuple[int, float]]:
"""
Perform dense semantic search using FAISS.
Args:
query: Search query
top_k: Number of results to return
similarity_threshold: Minimum similarity score to include
Returns:
List of (chunk_index, similarity_score) tuples
"""
# Generate query embedding
query_embedding = generate_embeddings(
[query],
model_name=self.embedding_model,
use_mps=self.use_mps
)
# Normalize for cosine similarity
faiss.normalize_L2(query_embedding)
# Search dense index
similarities, indices = self.dense_index.search(query_embedding, top_k)
# Convert to required format with similarity filtering
results = [
(int(indices[0][i]), float(similarities[0][i]))
for i in range(len(indices[0]))
if indices[0][i] != -1 and float(similarities[0][i]) >= similarity_threshold # Filter by similarity
]
return results
def _enhance_source_diversity(
self,
results: List[Tuple[int, float, Dict]],
top_k: int,
max_per_source: int = 2
) -> List[Tuple[int, float, Dict]]:
"""
Enhance source diversity in retrieval results to prevent over-focusing on single documents.
Args:
results: List of (chunk_idx, score, chunk_dict) tuples sorted by relevance
top_k: Maximum number of results to return
max_per_source: Maximum chunks allowed per source document
Returns:
Diversified results maintaining relevance while improving source coverage
"""
if not results:
return []
source_counts = {}
diverse_results = []
# First pass: Add highest scoring results respecting source limits
for chunk_idx, score, chunk_dict in results:
source = chunk_dict.get('source', 'unknown')
current_count = source_counts.get(source, 0)
if current_count < max_per_source:
diverse_results.append((chunk_idx, score, chunk_dict))
source_counts[source] = current_count + 1
if len(diverse_results) >= top_k:
break
# Second pass: If we still need more results, relax source constraints
if len(diverse_results) < top_k:
for chunk_idx, score, chunk_dict in results:
if (chunk_idx, score, chunk_dict) not in diverse_results:
diverse_results.append((chunk_idx, score, chunk_dict))
if len(diverse_results) >= top_k:
break
return diverse_results[:top_k]
def get_retrieval_stats(self) -> Dict[str, any]:
"""
Get statistics about the indexed corpus and retrieval performance.
Returns:
Dictionary with corpus statistics
"""
if not self.chunks:
return {"status": "not_indexed"}
return {
"status": "indexed",
"total_chunks": len(self.chunks),
"dense_index_size": self.dense_index.ntotal if self.dense_index else 0,
"embedding_dim": self.embeddings.shape[1] if self.embeddings is not None else 0,
"sparse_indexed_chunks": len(self.sparse_retriever.chunk_mapping),
"dense_weight": self.dense_weight,
"sparse_weight": 1.0 - self.dense_weight,
"rrf_k": self.rrf_k
}