#!/usr/bin/env python3 """ Production Monitoring for Confidence Calibration Drift This module provides real-time monitoring of confidence calibration quality in production, detecting drift and triggering recalibration alerts when needed. """ import json import logging from dataclasses import dataclass, asdict from datetime import datetime, timedelta from pathlib import Path from typing import List, Dict, Any, Optional, Tuple import numpy as np from collections import deque import statistics # Import calibration framework from confidence_calibration import CalibrationEvaluator, CalibrationDataPoint logger = logging.getLogger(__name__) @dataclass class MonitoringMetrics: """Metrics for confidence calibration monitoring.""" timestamp: datetime ece_score: float ace_score: float mce_score: float brier_score: float sample_count: int avg_confidence: float high_confidence_rate: float # Rate of >70% confidence predictions low_confidence_rate: float # Rate of <30% confidence predictions accuracy: float # Overall accuracy when available @dataclass class DriftAlert: """Alert for calibration drift detection.""" timestamp: datetime alert_type: str # 'ECE_DRIFT', 'ACCURACY_DROP', 'CALIBRATION_DEGRADATION' severity: str # 'WARNING', 'CRITICAL' current_value: float baseline_value: float threshold: float sample_count: int recommendation: str class CalibrationMonitor: """ Production monitoring system for confidence calibration drift detection. Monitors confidence calibration quality in real-time and alerts when recalibration is needed. """ def __init__( self, ece_threshold: float = 0.1, accuracy_threshold: float = 0.05, min_samples: int = 100, monitoring_window: int = 1000, baseline_metrics: Optional[MonitoringMetrics] = None ): """ Initialize the calibration monitor. Args: ece_threshold: Maximum acceptable ECE score accuracy_threshold: Minimum accuracy drop to trigger alert min_samples: Minimum samples before drift detection monitoring_window: Size of rolling window for monitoring baseline_metrics: Baseline metrics from validation """ self.ece_threshold = ece_threshold self.accuracy_threshold = accuracy_threshold self.min_samples = min_samples self.monitoring_window = monitoring_window self.baseline_metrics = baseline_metrics # Rolling windows for monitoring self.confidence_history = deque(maxlen=monitoring_window) self.correctness_history = deque(maxlen=monitoring_window) self.query_history = deque(maxlen=monitoring_window) # Metrics tracking self.metrics_history: List[MonitoringMetrics] = [] self.alerts_history: List[DriftAlert] = [] # Calibration evaluator for metrics calculation self.evaluator = CalibrationEvaluator() logger.info(f"CalibrationMonitor initialized with ECE threshold: {ece_threshold}") def add_query_result( self, confidence: float, correctness: Optional[float] = None, query_metadata: Optional[Dict[str, Any]] = None ) -> Optional[DriftAlert]: """ Add a query result to the monitoring system. Args: confidence: Predicted confidence (0.0-1.0) correctness: Actual correctness (0.0-1.0) if available query_metadata: Additional query metadata Returns: DriftAlert if drift detected, None otherwise """ # Add to rolling windows self.confidence_history.append(confidence) if correctness is not None: self.correctness_history.append(correctness) query_data = { 'timestamp': datetime.now(), 'confidence': confidence, 'correctness': correctness, 'metadata': query_metadata } self.query_history.append(query_data) # Check for drift if we have enough samples if len(self.confidence_history) >= self.min_samples: return self._check_drift() return None def _check_drift(self) -> Optional[DriftAlert]: """ Check for calibration drift in recent samples. Returns: DriftAlert if drift detected, None otherwise """ # Calculate current metrics current_metrics = self._calculate_current_metrics() if current_metrics is None: return None # Store metrics self.metrics_history.append(current_metrics) # Check for drift against thresholds drift_alert = None # ECE drift check if current_metrics.ece_score > self.ece_threshold: drift_alert = DriftAlert( timestamp=datetime.now(), alert_type='ECE_DRIFT', severity='WARNING' if current_metrics.ece_score < self.ece_threshold * 1.5 else 'CRITICAL', current_value=current_metrics.ece_score, baseline_value=self.baseline_metrics.ece_score if self.baseline_metrics else 0.0, threshold=self.ece_threshold, sample_count=current_metrics.sample_count, recommendation=self._get_drift_recommendation('ECE_DRIFT', current_metrics.ece_score) ) # Accuracy drop check (if we have baseline) elif (self.baseline_metrics and current_metrics.accuracy < self.baseline_metrics.accuracy - self.accuracy_threshold): drift_alert = DriftAlert( timestamp=datetime.now(), alert_type='ACCURACY_DROP', severity='WARNING', current_value=current_metrics.accuracy, baseline_value=self.baseline_metrics.accuracy, threshold=self.accuracy_threshold, sample_count=current_metrics.sample_count, recommendation=self._get_drift_recommendation('ACCURACY_DROP', current_metrics.accuracy) ) # Log and store alert if detected if drift_alert: self.alerts_history.append(drift_alert) logger.warning(f"Calibration drift detected: {drift_alert.alert_type} " f"({drift_alert.current_value:.3f} vs threshold {drift_alert.threshold:.3f})") return drift_alert def _calculate_current_metrics(self) -> Optional[MonitoringMetrics]: """ Calculate current monitoring metrics from recent samples. Returns: MonitoringMetrics if sufficient data, None otherwise """ if len(self.confidence_history) < self.min_samples: return None confidences = list(self.confidence_history) # If we have correctness data, calculate full metrics if len(self.correctness_history) >= self.min_samples: correctness = list(self.correctness_history) # Calculate calibration metrics using simple data structure data_points = [ CalibrationDataPoint( predicted_confidence=conf, actual_correctness=corr, query="monitoring_query", # Placeholder for monitoring answer="monitoring_answer", # Placeholder for monitoring context_relevance=0.8, # Default relevance metadata={"source": "production_monitoring"} ) for conf, corr in zip(confidences[-len(correctness):], correctness) ] # Calculate calibration metrics using evaluator calibration_metrics = self.evaluator.evaluate_calibration(data_points) ece = calibration_metrics.ece ace = calibration_metrics.ace mce = calibration_metrics.mce brier = calibration_metrics.brier_score accuracy = np.mean(correctness) else: # Limited metrics without correctness data ece = ace = mce = brier = accuracy = 0.0 # Calculate distribution metrics avg_confidence = np.mean(confidences) high_confidence_rate = np.mean([c >= 0.7 for c in confidences]) low_confidence_rate = np.mean([c <= 0.3 for c in confidences]) return MonitoringMetrics( timestamp=datetime.now(), ece_score=ece, ace_score=ace, mce_score=mce, brier_score=brier, sample_count=len(confidences), avg_confidence=avg_confidence, high_confidence_rate=high_confidence_rate, low_confidence_rate=low_confidence_rate, accuracy=accuracy ) def _get_drift_recommendation(self, alert_type: str, current_value: float) -> str: """ Get recommendation for handling detected drift. Args: alert_type: Type of drift detected current_value: Current metric value Returns: Recommendation string """ recommendations = { 'ECE_DRIFT': f""" Current ECE ({current_value:.3f}) exceeds threshold ({self.ece_threshold:.3f}). Recommendations: 1. Collect new validation dataset (500+ samples) 2. Refit temperature scaling calibration 3. Update production calibration parameters 4. Monitor for improvement over next 100 queries """, 'ACCURACY_DROP': f""" Accuracy dropped to {current_value:.3f} (threshold: {self.accuracy_threshold:.3f}). Recommendations: 1. Review recent query patterns for distribution shift 2. Check document quality and relevance 3. Consider expanding knowledge base 4. Retrain retrieval components if needed """, 'CALIBRATION_DEGRADATION': f""" Overall calibration quality degraded. Recommendations: 1. Full system calibration review 2. Retrain confidence prediction components 3. Update system prompts and parameters 4. Implement A/B testing for improvements """ } return recommendations.get(alert_type, "Contact ML engineering team for investigation.") def get_monitoring_dashboard_data(self) -> Dict[str, Any]: """ Get data for monitoring dashboard display. Returns: Dictionary with dashboard metrics and visualizations """ current_metrics = self._calculate_current_metrics() # Recent alerts (last 24 hours) recent_alerts = [ alert for alert in self.alerts_history if alert.timestamp > datetime.now() - timedelta(hours=24) ] # Metrics trends (last 10 measurements) recent_metrics = self.metrics_history[-10:] if self.metrics_history else [] dashboard_data = { 'current_status': { 'ece_score': current_metrics.ece_score if current_metrics else 0.0, 'ece_threshold': self.ece_threshold, 'sample_count': len(self.confidence_history), 'alerts_24h': len(recent_alerts), 'status': 'HEALTHY' if not recent_alerts else 'NEEDS_ATTENTION' }, 'metrics': { 'avg_confidence': current_metrics.avg_confidence if current_metrics else 0.0, 'high_confidence_rate': current_metrics.high_confidence_rate if current_metrics else 0.0, 'low_confidence_rate': current_metrics.low_confidence_rate if current_metrics else 0.0, 'accuracy': current_metrics.accuracy if current_metrics else 0.0 }, 'trends': { 'timestamps': [m.timestamp.isoformat() for m in recent_metrics], 'ece_scores': [m.ece_score for m in recent_metrics], 'avg_confidences': [m.avg_confidence for m in recent_metrics], 'accuracies': [m.accuracy for m in recent_metrics] }, 'recent_alerts': [ { 'timestamp': alert.timestamp.isoformat(), 'type': alert.alert_type, 'severity': alert.severity, 'current_value': alert.current_value, 'threshold': alert.threshold } for alert in recent_alerts ] } return dashboard_data def export_monitoring_report(self, filepath: str) -> bool: """ Export comprehensive monitoring report to file. Args: filepath: Path to save report Returns: True if successful, False otherwise """ try: report_data = { 'report_timestamp': datetime.now().isoformat(), 'monitoring_config': { 'ece_threshold': self.ece_threshold, 'accuracy_threshold': self.accuracy_threshold, 'min_samples': self.min_samples, 'monitoring_window': self.monitoring_window }, 'baseline_metrics': asdict(self.baseline_metrics) if self.baseline_metrics else None, 'current_metrics': asdict(self._calculate_current_metrics()) if self._calculate_current_metrics() else None, 'metrics_history': [asdict(m) for m in self.metrics_history], 'alerts_history': [asdict(a) for a in self.alerts_history], 'dashboard_data': self.get_monitoring_dashboard_data(), 'recommendations': self._generate_system_recommendations() } with open(filepath, 'w') as f: json.dump(report_data, f, indent=2, default=str) logger.info(f"Monitoring report exported to {filepath}") return True except Exception as e: logger.error(f"Failed to export monitoring report: {e}") return False def _generate_system_recommendations(self) -> List[str]: """ Generate system-level recommendations based on monitoring data. Returns: List of recommendation strings """ recommendations = [] current_metrics = self._calculate_current_metrics() if not current_metrics: return ["Insufficient data for recommendations. Continue monitoring."] # ECE recommendations if current_metrics.ece_score > self.ece_threshold: recommendations.append(f"ECE score ({current_metrics.ece_score:.3f}) exceeds threshold. Recalibration needed.") elif current_metrics.ece_score > self.ece_threshold * 0.8: recommendations.append("ECE score approaching threshold. Monitor closely.") # Confidence distribution recommendations if current_metrics.high_confidence_rate < 0.3: recommendations.append("Low high-confidence rate. Review system prompt and context quality.") elif current_metrics.high_confidence_rate > 0.8: recommendations.append("Very high confidence rate. Check for overconfidence bias.") if current_metrics.low_confidence_rate > 0.3: recommendations.append("High low-confidence rate. Improve context retrieval or expand knowledge base.") # Alert-based recommendations recent_alerts = [a for a in self.alerts_history if a.timestamp > datetime.now() - timedelta(days=7)] if len(recent_alerts) > 3: recommendations.append("Multiple alerts in past week. Full system review recommended.") if not recommendations: recommendations.append("System performing within acceptable parameters. Continue monitoring.") return recommendations class ProductionIntegration: """ Integration helper for adding monitoring to production RAG system. """ @staticmethod def create_monitoring_middleware(monitor: CalibrationMonitor): """ Create middleware function for automatic monitoring integration. Args: monitor: CalibrationMonitor instance Returns: Middleware function """ def monitoring_middleware(query_func): def wrapped_query(*args, **kwargs): # Execute original query result = query_func(*args, **kwargs) # Extract confidence for monitoring confidence = result.get('confidence', 0.0) # Add to monitoring (correctness would need human labeling) alert = monitor.add_query_result(confidence) # Add monitoring metadata to result result['monitoring'] = { 'alert': asdict(alert) if alert else None, 'sample_count': len(monitor.confidence_history), 'ece_status': 'OK' if not alert else alert.alert_type } return result return wrapped_query return monitoring_middleware @staticmethod def setup_production_monitoring( rag_system, baseline_metrics_file: Optional[str] = None, monitoring_config: Optional[Dict[str, Any]] = None ) -> CalibrationMonitor: """ Set up production monitoring for RAG system. Args: rag_system: RAG system instance baseline_metrics_file: Path to baseline metrics JSON monitoring_config: Configuration overrides Returns: Configured CalibrationMonitor """ # Load baseline metrics if available baseline_metrics = None if baseline_metrics_file and Path(baseline_metrics_file).exists(): try: with open(baseline_metrics_file, 'r') as f: baseline_data = json.load(f) baseline_metrics = MonitoringMetrics(**baseline_data) logger.info(f"Loaded baseline metrics from {baseline_metrics_file}") except Exception as e: logger.warning(f"Failed to load baseline metrics: {e}") # Apply configuration config = monitoring_config or {} monitor = CalibrationMonitor( ece_threshold=config.get('ece_threshold', 0.1), accuracy_threshold=config.get('accuracy_threshold', 0.05), min_samples=config.get('min_samples', 100), monitoring_window=config.get('monitoring_window', 1000), baseline_metrics=baseline_metrics ) # Integrate monitoring middleware if hasattr(rag_system, 'query_with_answer'): middleware = ProductionIntegration.create_monitoring_middleware(monitor) rag_system.query_with_answer = middleware(rag_system.query_with_answer) logger.info("Monitoring middleware integrated with RAG system") return monitor def create_baseline_metrics_from_validation( validation_data: List[Dict[str, float]], output_file: str ) -> MonitoringMetrics: """ Create baseline metrics from validation dataset. Args: validation_data: List of dicts with 'confidence' and 'correctness' output_file: Path to save baseline metrics Returns: MonitoringMetrics baseline """ evaluator = CalibrationEvaluator() # Convert to data points data_points = [ CalibrationDataPoint(item['confidence'], item['correctness']) for item in validation_data ] # Calculate metrics ece = evaluator.expected_calibration_error(data_points) ace = evaluator.adaptive_calibration_error(data_points) mce = evaluator.maximum_calibration_error(data_points) brier = evaluator.brier_score(data_points) confidences = [item['confidence'] for item in validation_data] correctness = [item['correctness'] for item in validation_data] baseline_metrics = MonitoringMetrics( timestamp=datetime.now(), ece_score=ece, ace_score=ace, mce_score=mce, brier_score=brier, sample_count=len(validation_data), avg_confidence=np.mean(confidences), high_confidence_rate=np.mean([c >= 0.7 for c in confidences]), low_confidence_rate=np.mean([c <= 0.3 for c in confidences]), accuracy=np.mean(correctness) ) # Save baseline metrics with open(output_file, 'w') as f: json.dump(asdict(baseline_metrics), f, indent=2, default=str) logger.info(f"Baseline metrics saved to {output_file}") return baseline_metrics if __name__ == "__main__": # Example usage print("šŸ” Testing Production Monitoring System") # Create monitor monitor = CalibrationMonitor( ece_threshold=0.1, min_samples=10 # Lower for testing ) # Simulate some queries import random np.random.seed(42) print("\nšŸ“Š Simulating query results...") for i in range(50): # Simulate realistic confidence and correctness confidence = max(0.1, min(0.9, np.random.normal(0.7, 0.2))) correctness = 1.0 if confidence > 0.6 else 0.0 alert = monitor.add_query_result(confidence, correctness) if alert: print(f"🚨 Alert detected: {alert.alert_type} (ECE: {alert.current_value:.3f})") # Get dashboard data dashboard = monitor.get_monitoring_dashboard_data() print(f"\nšŸ“ˆ Dashboard Status: {dashboard['current_status']['status']}") print(f"Current ECE: {dashboard['current_status']['ece_score']:.3f}") print(f"Sample Count: {dashboard['current_status']['sample_count']}") # Export report monitor.export_monitoring_report("monitoring_test_report.json") print("āœ… Production monitoring test completed!")