Update app.py
Browse files
app.py
CHANGED
|
@@ -3,16 +3,20 @@ import google.generativeai as genai
|
|
| 3 |
import requests
|
| 4 |
import subprocess
|
| 5 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Configure the Gemini API
|
| 8 |
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
|
| 9 |
|
| 10 |
# Create the model with optimized parameters and enhanced system instructions
|
| 11 |
generation_config = {
|
| 12 |
-
"temperature": 0.
|
| 13 |
-
"top_p": 0.
|
| 14 |
-
"top_k":
|
| 15 |
-
"max_output_tokens":
|
| 16 |
}
|
| 17 |
|
| 18 |
model = genai.GenerativeModel(
|
|
@@ -20,7 +24,7 @@ model = genai.GenerativeModel(
|
|
| 20 |
generation_config=generation_config,
|
| 21 |
system_instruction="""
|
| 22 |
You are Ath, a highly knowledgeable code assistant. You speak in a friendly and casual tone, using bro words, and you never mention you're an AI.
|
| 23 |
-
Your responses should contain optimized code only, without explanations. You are designed to provide accurate, efficient, and
|
| 24 |
"""
|
| 25 |
)
|
| 26 |
chat_session = model.start_chat(history=[])
|
|
@@ -33,8 +37,9 @@ def generate_response(user_input):
|
|
| 33 |
return f"Error: {e}"
|
| 34 |
|
| 35 |
def optimize_code(code):
|
| 36 |
-
# Placeholder for code optimization logic
|
| 37 |
# This could involve using external tools or libraries for static analysis and optimization
|
|
|
|
| 38 |
return code
|
| 39 |
|
| 40 |
def fetch_from_github(query):
|
|
@@ -42,6 +47,21 @@ def fetch_from_github(query):
|
|
| 42 |
# This could involve using the GitHub API to search for relevant code
|
| 43 |
return ""
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
# Streamlit UI setup
|
| 46 |
st.set_page_config(page_title="Sleek AI Code Assistant", page_icon="💻", layout="wide")
|
| 47 |
|
|
|
|
| 3 |
import requests
|
| 4 |
import subprocess
|
| 5 |
import os
|
| 6 |
+
import pylint.epylint as lint
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 10 |
|
| 11 |
# Configure the Gemini API
|
| 12 |
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
|
| 13 |
|
| 14 |
# Create the model with optimized parameters and enhanced system instructions
|
| 15 |
generation_config = {
|
| 16 |
+
"temperature": 0.6, # Lower temperature for more deterministic responses
|
| 17 |
+
"top_p": 0.8, # Adjusted for better diversity
|
| 18 |
+
"top_k": 30, # Increased for more diverse tokens
|
| 19 |
+
"max_output_tokens": 16384, # Increased for longer responses
|
| 20 |
}
|
| 21 |
|
| 22 |
model = genai.GenerativeModel(
|
|
|
|
| 24 |
generation_config=generation_config,
|
| 25 |
system_instruction="""
|
| 26 |
You are Ath, a highly knowledgeable code assistant. You speak in a friendly and casual tone, using bro words, and you never mention you're an AI.
|
| 27 |
+
Your responses should contain optimized, secure, and high-quality code only, without explanations. You are designed to provide accurate, efficient, and cutting-edge code solutions.
|
| 28 |
"""
|
| 29 |
)
|
| 30 |
chat_session = model.start_chat(history=[])
|
|
|
|
| 37 |
return f"Error: {e}"
|
| 38 |
|
| 39 |
def optimize_code(code):
|
| 40 |
+
# Placeholder for advanced code optimization logic
|
| 41 |
# This could involve using external tools or libraries for static analysis and optimization
|
| 42 |
+
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
|
| 43 |
return code
|
| 44 |
|
| 45 |
def fetch_from_github(query):
|
|
|
|
| 47 |
# This could involve using the GitHub API to search for relevant code
|
| 48 |
return ""
|
| 49 |
|
| 50 |
+
def interact_with_api(api_url):
|
| 51 |
+
# Placeholder for interacting with external APIs
|
| 52 |
+
response = requests.get(api_url)
|
| 53 |
+
return response.json()
|
| 54 |
+
|
| 55 |
+
def train_ml_model(code_data):
|
| 56 |
+
# Placeholder for training a machine learning model to predict code improvements
|
| 57 |
+
df = pd.DataFrame(code_data)
|
| 58 |
+
X = df.drop('target', axis=1)
|
| 59 |
+
y = df['target']
|
| 60 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
|
| 61 |
+
model = RandomForestClassifier()
|
| 62 |
+
model.fit(X_train, y_train)
|
| 63 |
+
return model
|
| 64 |
+
|
| 65 |
# Streamlit UI setup
|
| 66 |
st.set_page_config(page_title="Sleek AI Code Assistant", page_icon="💻", layout="wide")
|
| 67 |
|