Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from PyPDF2 import PdfReader
|
5 |
+
from langchain_community.llms import llamacpp
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
8 |
+
from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler
|
9 |
+
from langchain.vectorstores import Chroma
|
10 |
+
from langchain.chat_models import ChatOpenAI
|
11 |
+
from langchain_community.chat_message_histories.streamlit import StreamlitChatMessageHistory
|
12 |
+
from langchain.prompts import PromptTemplate,SystemMessagePromptTemplate,ChatPromptTemplate
|
13 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
14 |
+
from langchain.chains import create_history_aware_retriever, create_retrieval_chain, ConversationalRetrievalChain
|
15 |
+
from langchain.text_splitter import TokenTextSplitter,RecursiveCharacterTextSplitter
|
16 |
+
from langchain_core.runnables.history import RunnableWithMessageHistory
|
17 |
+
from langchain_community.document_loaders.directory import DirectoryLoader
|
18 |
+
from langchain.document_loaders import PyPDFLoader
|
19 |
+
from htmlTemplates import css, bot_template, user_template
|
20 |
+
from langchain.memory import ConversationBufferMemory
|
21 |
+
from langchain.chains import ConversationalRetrievalChain
|
22 |
+
from langchain_core.output_parsers import StrOutputParser
|
23 |
+
from langchain_core.runnables import RunnablePassthrough
|
24 |
+
from langchain import hub
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
lang_api_key = os.getenv("lang_api_key")
|
32 |
+
|
33 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
34 |
+
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.langchain.plus"
|
35 |
+
os.environ["LANGCHAIN_API_KEY"] = lang_api_key
|
36 |
+
os.environ["LANGCHAIN_PROJECT"] = "Chat with multiple PDFs"
|
37 |
+
|
38 |
+
|
39 |
+
def get_pdf_text(pdf_docs):
|
40 |
+
text = ""
|
41 |
+
for pdf in pdf_docs:
|
42 |
+
pdf_reader = PdfReader(pdf)
|
43 |
+
for page in pdf_reader.pages:
|
44 |
+
text += page.extract_text()
|
45 |
+
return text
|
46 |
+
|
47 |
+
def get_text_chunks(text):
|
48 |
+
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
49 |
+
chunk_size=250, chunk_overlap=50,
|
50 |
+
separators=["\n \n \n", "\n \n", "\n1", "(?<=\. )", " ", ""],
|
51 |
+
)
|
52 |
+
chunks = text_splitter.split_text(text)
|
53 |
+
return chunks
|
54 |
+
|
55 |
+
def get_vectorstore(text_chunks):
|
56 |
+
model_name = "Alibaba-NLP/gte-base-en-v1.5"
|
57 |
+
model_kwargs = {'device': 'cpu',
|
58 |
+
"trust_remote_code" : 'True'}
|
59 |
+
encode_kwargs = {'normalize_embeddings': True}
|
60 |
+
embeddings = HuggingFaceEmbeddings(
|
61 |
+
model_name=model_name,
|
62 |
+
model_kwargs=model_kwargs,
|
63 |
+
encode_kwargs=encode_kwargs
|
64 |
+
)
|
65 |
+
vectorstore = Chroma.from_texts(
|
66 |
+
texts=text_chunks, embedding=embeddings, persist_directory="docs/chroma/")
|
67 |
+
return vectorstore
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
def get_conversation_chain():
|
72 |
+
|
73 |
+
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
74 |
+
|
75 |
+
|
76 |
+
llm = llamacpp.LlamaCpp(
|
77 |
+
model_path="qwen2-0_5b-instruct-q8_0.gguf",
|
78 |
+
n_gpu_layers=0,
|
79 |
+
temperature=0.1,
|
80 |
+
top_p = 0.9,
|
81 |
+
n_ctx=20000,
|
82 |
+
n_batch=2000,
|
83 |
+
max_tokens = 300,
|
84 |
+
repeat_penalty=1.9,
|
85 |
+
last_n_tokens_size = 300,
|
86 |
+
|
87 |
+
#callback_manager=callback_manager,
|
88 |
+
verbose=False,
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
prompt = hub.pull("rlm/rag-prompt")
|
99 |
+
rag_chain = prompt | llm | StrOutputParser()
|
100 |
+
|
101 |
+
|
102 |
+
return rag_chain
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
def main():
|
115 |
+
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
|
116 |
+
st.write(css, unsafe_allow_html=True)
|
117 |
+
|
118 |
+
st.header("Chat with multiple PDFs :books:")
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
if user_question := st.text_input("Ask a question about your documents:"):
|
127 |
+
handle_userinput(user_question, vectorstore, conversation)
|
128 |
+
|
129 |
+
st.subheader("Your documents")
|
130 |
+
pdf_docs = st.file_uploader("For Chatbot to get alive, upload your PDFs here and click on 'Process'", accept_multiple_files=True)
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
if st.button("Process"):
|
135 |
+
with st.spinner("Processing"):
|
136 |
+
if pdf_docs:
|
137 |
+
# get pdf text
|
138 |
+
raw_text = get_pdf_text(pdf_docs)
|
139 |
+
|
140 |
+
# get the text chunks
|
141 |
+
text_chunks = get_text_chunks(raw_text)
|
142 |
+
|
143 |
+
# create vector store
|
144 |
+
vectorstore = get_vectorstore(text_chunks)
|
145 |
+
|
146 |
+
# create conversation chain
|
147 |
+
conversation = get_conversation_chain()
|
148 |
+
|
149 |
+
st.success("Files have been processed into a vector store.")
|
150 |
+
|
151 |
+
return vectorstore , conversation
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
st.subheader("Chat Bot")
|
159 |
+
if user_question := st.text_input("Ask a question about your documents:"):
|
160 |
+
handle_userinput(user_question, vectorstore, conversation)
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
def handle_userinput(user_question,vectorstore,conversation ):
|
165 |
+
|
166 |
+
if "chat_history" not in st.session_state:
|
167 |
+
st.session_state["chat_history"] = [
|
168 |
+
{"role": "assistant", "content": "Hi, I'm a Q&A chatbot who is based on your imported pdf documents . How can I help you?"}
|
169 |
+
]
|
170 |
+
|
171 |
+
|
172 |
+
st.session_state.chat_history.append({"role": "user", "content": user_question})
|
173 |
+
|
174 |
+
|
175 |
+
retriever = vectorstore.as_retriever(search_type = 'mmr', search_kwargs={"k": 7})
|
176 |
+
docs = retriever.invoke(user_question)
|
177 |
+
with st.sidebar:
|
178 |
+
st.subheader("Your documents")
|
179 |
+
with st.spinner("Processing"):
|
180 |
+
for doc in docs:
|
181 |
+
st.write(f"Document: {doc}")
|
182 |
+
|
183 |
+
doc_txt = [doc.page_content for doc in docs]
|
184 |
+
|
185 |
+
# Invoke conversation chain
|
186 |
+
response = conversation.invoke({"context": docs, "question": user_question})
|
187 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
188 |
+
|
189 |
+
for i, message in enumerate(st.session_state.chat_history):
|
190 |
+
if i % 2 == 0:
|
191 |
+
st.write(user_template.replace(
|
192 |
+
"{{MSG}}", message['content']), unsafe_allow_html=True)
|
193 |
+
else:
|
194 |
+
st.write(bot_template.replace(
|
195 |
+
"{{MSG}}", message['content']), unsafe_allow_html=True)
|
196 |
+
|
197 |
+
# if 'source_documents' in response:
|
198 |
+
# st.subheader("Retrieved Documents")
|
199 |
+
# for doc in response['source_documents']:
|
200 |
+
# st.write(f"Document: {doc.metadata['source']}")
|
201 |
+
# st.write(doc.page_content)
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
if __name__ == '__main__':
|
206 |
+
main()
|