Spaces:
Sleeping
Sleeping
File size: 26,086 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f a168d8d 5800fed b68acbf 10e9b7d d59f015 e80aab9 3db6293 e80aab9 b8b2eb5 5122b7b b8b2eb5 5800fed da4b862 a168d8d 05234cd a168d8d 05234cd a168d8d 05234cd a168d8d 05234cd 5800fed a168d8d 05234cd 5800fed 05234cd 5800fed 05234cd 5800fed a168d8d 5800fed a168d8d 05234cd a168d8d 5800fed b714116 5800fed b714116 5800fed b714116 5800fed b714116 5800fed b714116 5800fed b714116 a168d8d 5800fed a168d8d 5800fed a168d8d 5800fed a168d8d 5800fed a168d8d 5800fed a168d8d 5800fed a168d8d 5800fed a168d8d 5800fed a168d8d 5800fed a168d8d 5800fed a168d8d 957e1a6 5800fed 957e1a6 5800fed a168d8d 5800fed a168d8d 5800fed a168d8d b714116 a168d8d acd2047 a168d8d acd2047 a168d8d acd2047 a168d8d acd2047 a168d8d acd2047 a168d8d acd2047 a168d8d acd2047 a168d8d b90251f 31243f4 7d65c66 b177367 b8b2eb5 7e4a06b b8b2eb5 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 b68acbf 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 a5d102b 5800fed a5d102b 31243f4 a5d102b 7d65c66 a5d102b 7d65c66 a5d102b 31243f4 a5d102b 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 b8b2eb5 e80aab9 b8b2eb5 31243f4 b8b2eb5 e80aab9 c143e01 edab6f8 48d443e e514fd7 48d443e a168d8d b714116 48d443e e80aab9 9088b99 7d65c66 e80aab9 48d443e b714116 a168d8d 48d443e b714116 48d443e e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import json
from datasets import Dataset
from huggingface_hub import HfApi
from gaia_agent import GaiaAgent
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# To check if we are running locally
running_on_hf = bool(os.getenv("SPACE_ID") or os.getenv("SPACE_HOST"))
# Questions the agent can reliably solve (no images, audio, video)
SOLVABLE_INDICES = [0, 2, 4] # Mercedes Sosa, Reversed text, Dinosaur Featured Article
def get_dataset_name():
"""Get the private dataset name for this space"""
space_id = os.getenv("SPACE_ID")
if space_id:
# Replace invalid characters for HF dataset names
clean_name = space_id.replace('/', '_').replace('-', '_')
return f"{clean_name}_gaia_answers"
return "gaia_answers_cache"
def load_answers_cache():
"""Load cached answers from local file (fallback from HF Dataset due to auth issues)"""
try:
cache_file = "verified_answers.json"
if os.path.exists(cache_file):
with open(cache_file, 'r') as f:
cache = json.load(f)
print(f"β
Loaded {len(cache)} cached answers from local file")
return cache
except Exception as e:
print(f"π No existing cache found: {e}")
return {}
def save_answers_cache(cache, token=None):
"""Save cached answers to local file (fallback from HF Dataset due to auth issues)"""
if not cache:
return False
try:
cache_file = "verified_answers.json"
with open(cache_file, 'w') as f:
json.dump(cache, f, indent=2)
print(f"πΎ Saved {len(cache)} answers to local file: {cache_file}")
# Try to commit to git if in HF Spaces
if running_on_hf:
try:
import subprocess
subprocess.run(["git", "add", cache_file], check=True)
subprocess.run(["git", "commit", "-m", f"Cache {len(cache)} verified answers"], check=True)
print("π Committed cache to repository")
except Exception as git_error:
print(f"β οΈ Could not commit to git: {git_error}")
return True
except Exception as e:
print(f"Error saving cache: {e}")
return False
def check_answers_correctness(answers_payload, questions_data):
"""
Submit answers to get correctness feedback and return which ones were correct
"""
if not running_on_hf:
return {}
try:
# Prepare minimal submission for validation
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
submission_data = {
"username": "validation_check",
"agent_code": agent_code,
"answers": answers_payload
}
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
print(f"π Validation API response: {result_data}")
# Parse which answers were correct
correct_answers = {}
# Try different response formats
if "detailed_results" in result_data:
for result in result_data["detailed_results"]:
if result.get("correct", False):
task_id = result.get("task_id")
for answer in answers_payload:
if answer["task_id"] == task_id:
correct_answers[task_id] = answer["submitted_answer"]
break
elif "results" in result_data:
for result in result_data["results"]:
if result.get("correct", False):
task_id = result.get("task_id")
for answer in answers_payload:
if answer["task_id"] == task_id:
correct_answers[task_id] = answer["submitted_answer"]
break
else:
# Try to infer from score and correct_count
correct_count = result_data.get("correct_count", 0)
total_count = len(answers_payload)
print(f"π Got {correct_count}/{total_count} correct, but no detailed breakdown")
# If we can't get detailed results, we'll need to use a different approach
# For now, return empty dict to avoid caching potentially wrong answers
print(f"β
Found {len(correct_answers)} correct answers: {list(correct_answers.keys())}")
return correct_answers
except Exception as e:
print(f"β Error checking answer correctness: {e}")
return {}
def manually_cache_answer(task_id: str, answer: str):
"""
Manually add a verified correct answer to the cache
"""
if not running_on_hf:
return "Manual caching only available on HuggingFace Spaces"
try:
cache = load_answers_cache()
cache[task_id] = answer
if save_answers_cache(cache):
return f"β
Manually cached answer for {task_id}: {answer}"
else:
return f"β Failed to save manual cache"
except Exception as e:
return f"β Error in manual caching: {e}"
def run_and_cache_answers(profile: gr.OAuthProfile | None):
"""
Runs agent on questions, validates answers, and caches only correct ones
"""
if not running_on_hf:
return "Caching only available on HuggingFace Spaces", None
username = f"{profile.username}" if profile else "unknown_user"
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
# 1. Instantiate Agent
try:
agent = GaiaAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
# 2. Fetch Questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
except Exception as e:
return f"Error fetching questions: {e}", None
# 3. Load existing cache (verified correct answers)
cache = load_answers_cache()
# 4. Run agent only on unsolved questions
results_log = []
new_answers_payload = []
for idx in SOLVABLE_INDICES:
if idx >= len(questions_data):
continue
item = questions_data[idx]
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
# Skip if already have correct answer cached
if task_id in cache:
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": cache[task_id],
"Status": "β
CORRECT (CACHED)"
})
continue
try:
print(f"Processing question {idx+1}: {question_text[:100]}...")
submitted_answer = agent(question_text)
# Add to payload for validation
new_answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": submitted_answer,
"Status": "π VALIDATING..."
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": f"ERROR: {e}",
"Status": "β FAILED"
})
# 5. Validate new answers one by one and cache only correct ones
if new_answers_payload:
print(f"π Validating {len(new_answers_payload)} answers one by one...")
correct_answers = {}
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
for answer in new_answers_payload:
try:
# Test this answer alone
single_submission = {
"username": f"test_{answer['task_id'][:8]}",
"agent_code": agent_code,
"answers": [answer]
}
print(f"Testing: {answer['submitted_answer']}")
response = requests.post(submit_url, json=single_submission, timeout=30)
response.raise_for_status()
result_data = response.json()
correct_count = result_data.get("correct_count", 0)
if correct_count > 0:
print(f"β
CORRECT: {answer['submitted_answer']}")
correct_answers[answer['task_id']] = answer['submitted_answer']
else:
print(f"β WRONG: {answer['submitted_answer']}")
except Exception as e:
print(f"β οΈ Error testing {answer['submitted_answer']}: {e}")
# Update cache with only correct answers
cache.update(correct_answers)
# Update results log with validation results
for log_entry in results_log:
if log_entry["Status"] == "π VALIDATING...":
task_id = log_entry["Task ID"]
if task_id in correct_answers:
log_entry["Status"] = "β
CORRECT (NEW)"
else:
log_entry["Status"] = "β INCORRECT"
# Save updated cache
if correct_answers:
save_answers_cache(cache)
status = f"π Validated {len(new_answers_payload)} answers. Cached {len(correct_answers)} correct answers!"
else:
status = f"π Validated {len(new_answers_payload)} answers. None were correct this time."
else:
status = "All target questions already have correct answers cached!"
return status, pd.DataFrame(results_log)
def run_and_show_answers(profile: gr.OAuthProfile | None):
"""
Runs agent on questions and shows results without auto-validation (for manual review)
"""
if not running_on_hf:
return "This function only available on HuggingFace Spaces", None
username = f"{profile.username}" if profile else "unknown_user"
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
# 1. Instantiate Agent
try:
agent = GaiaAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
# 2. Fetch Questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
except Exception as e:
return f"Error fetching questions: {e}", None
# 3. Load existing cache
cache = load_answers_cache()
# 4. Run agent on all target questions
results_log = []
for idx in SOLVABLE_INDICES:
if idx >= len(questions_data):
continue
item = questions_data[idx]
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
# Check if already cached
if task_id in cache:
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": cache[task_id],
"Status": "β
CACHED"
})
continue
try:
print(f"Processing question {idx+1}: {question_text[:100]}...")
submitted_answer = agent(question_text)
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": submitted_answer,
"Status": "π REVIEW NEEDED"
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": f"ERROR: {e}",
"Status": "β FAILED"
})
status = (
f"π Generated answers for manual review.\n"
f"If an answer looks correct, you can manually cache it.\n"
f"Known correct answers:\n"
f"- Reversed text question: should be 'right'\n"
f"- Mercedes Sosa albums: try different numbers if needed\n"
f"- Dinosaur Featured Article: check nomination info"
)
return status, pd.DataFrame(results_log)
def submit_cached_answers(profile: gr.OAuthProfile | None):
"""
Submits all cached answers
"""
if not running_on_hf:
return "Submission only available on HuggingFace Spaces", None
if not profile:
return "Please login to submit answers", None
username = f"{profile.username}"
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Load cache
cache = load_answers_cache()
if not cache:
return "No cached answers found", None
print(f"π€ Preparing to submit {len(cache)} cached answers:")
for task_id, answer in cache.items():
print(f" {task_id[:8]}... = {answer}")
# Prepare submission - ensure answers are strings
answers_payload = []
for task_id, answer in cache.items():
answers_payload.append({
"task_id": str(task_id),
"submitted_answer": str(answer)
})
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"π‘ Submitting as user: {username}")
print(f"π Agent code: {agent_code}")
# Submit
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
print(f"π Response status: {response.status_code}")
response.raise_for_status()
result_data = response.json()
print(f"π API Response: {result_data}")
final_status = (
f"π Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Submitted {len(answers_payload)} cached answers\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
# Show cached answers for reference
results_log = [{"Task ID": task_id, "Cached Answer": answer, "Status": "β
SUBMITTED"}
for task_id, answer in cache.items()]
return final_status, pd.DataFrame(results_log)
except requests.exceptions.HTTPError as http_err:
error_detail = f"HTTP {response.status_code}: {response.text}"
return f"β Submission Failed: {error_detail}", pd.DataFrame([{"Task ID": task_id, "Cached Answer": answer, "Status": "β FAILED"}
for task_id, answer in cache.items()])
except Exception as e:
return f"β Submission Failed: {e}", pd.DataFrame([{"Task ID": task_id, "Cached Answer": answer, "Status": "β FAILED"}
for task_id, answer in cache.items()])
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if running_on_hf:
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
else:
username = "local_user"
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = GaiaAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(SOLVABLE_INDICES)} solvable questions...")
for idx in SOLVABLE_INDICES:
if idx >= len(questions_data):
continue
item = questions_data[idx]
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
print(f"Processing question {idx+1}: {question_text[:100]}...")
submitted_answer = agent(question_text)
print(f"Answer for question {idx+1}: {submitted_answer}")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text[:150] + "..." if len(question_text) > 150 else question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text[:150] + "..." if len(question_text) > 150 else question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
if running_on_hf:
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
else:
print(f"Agent finished locally on {len(answers_payload)} questions (not submitted).")
results_df = pd.DataFrame(results_log)
return f"Ran locally as '{username}', results below (no submission).", results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent")
gr.Image(value="assets/AI_Programmer.png")
gr.Markdown("An agent using smolagents to solve the GAIA Benchmark. By @ArturoNereu")
if running_on_hf:
gr.LoginButton()
with gr.Row():
review_button = gr.Button("Run & Review Answers")
cache_button = gr.Button("Run & Auto-Cache Correct")
submit_cache_button = gr.Button("Submit Cached Answers")
with gr.Row():
run_button = gr.Button("Run & Submit All (Direct)")
# Manual caching section
gr.Markdown("### Manual Answer Caching")
with gr.Row():
task_id_input = gr.Textbox(label="Task ID", placeholder="e.g., 2d83110e-a098-4ebb-9987-066c06fa42d0")
answer_input = gr.Textbox(label="Correct Answer", placeholder="e.g., right")
manual_cache_button = gr.Button("Cache This Answer")
else:
run_button = gr.Button("Run Evaluation (Local)")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
if running_on_hf:
review_button.click(
fn=run_and_show_answers,
outputs=[status_output, results_table]
)
cache_button.click(
fn=run_and_cache_answers,
outputs=[status_output, results_table]
)
submit_cache_button.click(
fn=submit_cached_answers,
outputs=[status_output, results_table]
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
manual_cache_button.click(
fn=lambda task_id, answer: (manually_cache_answer(task_id, answer), None),
inputs=[task_id_input, answer_input],
outputs=[status_output, results_table]
)
else:
run_button.click(
fn=lambda: run_and_submit_all(None),
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"β
SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"β
SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |