import os import gradio as gr import requests import inspect import pandas as pd import json from datasets import Dataset from huggingface_hub import HfApi from gaia_agent import GaiaAgent # (Keep Constants as is) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # To check if we are running locally running_on_hf = bool(os.getenv("SPACE_ID") or os.getenv("SPACE_HOST")) # Questions the agent can reliably solve (no images, audio, video) SOLVABLE_INDICES = [0, 2, 4] # Mercedes Sosa, Reversed text, Dinosaur Featured Article def get_dataset_name(): """Get the private dataset name for this space""" space_id = os.getenv("SPACE_ID") if space_id: # Replace invalid characters for HF dataset names clean_name = space_id.replace('/', '_').replace('-', '_') return f"{clean_name}_gaia_answers" return "gaia_answers_cache" def load_answers_cache(): """Load cached answers from local file (fallback from HF Dataset due to auth issues)""" try: cache_file = "verified_answers.json" if os.path.exists(cache_file): with open(cache_file, 'r') as f: cache = json.load(f) print(f"✅ Loaded {len(cache)} cached answers from local file") return cache except Exception as e: print(f"📝 No existing cache found: {e}") return {} def save_answers_cache(cache, token=None): """Save cached answers to local file (fallback from HF Dataset due to auth issues)""" if not cache: return False try: cache_file = "verified_answers.json" with open(cache_file, 'w') as f: json.dump(cache, f, indent=2) print(f"💾 Saved {len(cache)} answers to local file: {cache_file}") # Try to commit to git if in HF Spaces if running_on_hf: try: import subprocess subprocess.run(["git", "add", cache_file], check=True) subprocess.run(["git", "commit", "-m", f"Cache {len(cache)} verified answers"], check=True) print("📝 Committed cache to repository") except Exception as git_error: print(f"âš ī¸ Could not commit to git: {git_error}") return True except Exception as e: print(f"Error saving cache: {e}") return False def check_answers_correctness(answers_payload, questions_data): """ Submit answers to get correctness feedback and return which ones were correct """ if not running_on_hf: return {} try: # Prepare minimal submission for validation space_id = os.getenv("SPACE_ID") agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" submission_data = { "username": "validation_check", "agent_code": agent_code, "answers": answers_payload } api_url = DEFAULT_API_URL submit_url = f"{api_url}/submit" response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() print(f"📊 Validation API response: {result_data}") # Parse which answers were correct correct_answers = {} # Try different response formats if "detailed_results" in result_data: for result in result_data["detailed_results"]: if result.get("correct", False): task_id = result.get("task_id") for answer in answers_payload: if answer["task_id"] == task_id: correct_answers[task_id] = answer["submitted_answer"] break elif "results" in result_data: for result in result_data["results"]: if result.get("correct", False): task_id = result.get("task_id") for answer in answers_payload: if answer["task_id"] == task_id: correct_answers[task_id] = answer["submitted_answer"] break else: # Try to infer from score and correct_count correct_count = result_data.get("correct_count", 0) total_count = len(answers_payload) print(f"📈 Got {correct_count}/{total_count} correct, but no detailed breakdown") # If we can't get detailed results, we'll need to use a different approach # For now, return empty dict to avoid caching potentially wrong answers print(f"✅ Found {len(correct_answers)} correct answers: {list(correct_answers.keys())}") return correct_answers except Exception as e: print(f"❌ Error checking answer correctness: {e}") return {} def manually_cache_answer(task_id: str, answer: str): """ Manually add a verified correct answer to the cache """ if not running_on_hf: return "Manual caching only available on HuggingFace Spaces" try: cache = load_answers_cache() cache[task_id] = answer if save_answers_cache(cache): return f"✅ Manually cached answer for {task_id}: {answer}" else: return f"❌ Failed to save manual cache" except Exception as e: return f"❌ Error in manual caching: {e}" def run_and_cache_answers(profile: gr.OAuthProfile | None): """ Runs agent on questions, validates answers, and caches only correct ones """ if not running_on_hf: return "Caching only available on HuggingFace Spaces", None username = f"{profile.username}" if profile else "unknown_user" api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" # 1. Instantiate Agent try: agent = GaiaAgent() except Exception as e: return f"Error initializing agent: {e}", None # 2. Fetch Questions try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "Fetched questions list is empty.", None except Exception as e: return f"Error fetching questions: {e}", None # 3. Load existing cache (verified correct answers) cache = load_answers_cache() # 4. Run agent only on unsolved questions results_log = [] new_answers_payload = [] for idx in SOLVABLE_INDICES: if idx >= len(questions_data): continue item = questions_data[idx] task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue # Skip if already have correct answer cached if task_id in cache: results_log.append({ "Task ID": task_id, "Question": question_text[:100] + "...", "Answer": cache[task_id], "Status": "✅ CORRECT (CACHED)" }) continue try: print(f"Processing question {idx+1}: {question_text[:100]}...") submitted_answer = agent(question_text) # Add to payload for validation new_answers_payload.append({ "task_id": task_id, "submitted_answer": submitted_answer }) results_log.append({ "Task ID": task_id, "Question": question_text[:100] + "...", "Answer": submitted_answer, "Status": "🔄 VALIDATING..." }) except Exception as e: results_log.append({ "Task ID": task_id, "Question": question_text[:100] + "...", "Answer": f"ERROR: {e}", "Status": "❌ FAILED" }) # 5. Validate new answers one by one and cache only correct ones if new_answers_payload: print(f"🔍 Validating {len(new_answers_payload)} answers one by one...") correct_answers = {} space_id = os.getenv("SPACE_ID") agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" api_url = DEFAULT_API_URL submit_url = f"{api_url}/submit" for answer in new_answers_payload: try: # Test this answer alone single_submission = { "username": f"test_{answer['task_id'][:8]}", "agent_code": agent_code, "answers": [answer] } print(f"Testing: {answer['submitted_answer']}") response = requests.post(submit_url, json=single_submission, timeout=30) response.raise_for_status() result_data = response.json() correct_count = result_data.get("correct_count", 0) if correct_count > 0: print(f"✅ CORRECT: {answer['submitted_answer']}") correct_answers[answer['task_id']] = answer['submitted_answer'] else: print(f"❌ WRONG: {answer['submitted_answer']}") except Exception as e: print(f"âš ī¸ Error testing {answer['submitted_answer']}: {e}") # Update cache with only correct answers cache.update(correct_answers) # Update results log with validation results for log_entry in results_log: if log_entry["Status"] == "🔄 VALIDATING...": task_id = log_entry["Task ID"] if task_id in correct_answers: log_entry["Status"] = "✅ CORRECT (NEW)" else: log_entry["Status"] = "❌ INCORRECT" # Save updated cache if correct_answers: save_answers_cache(cache) status = f"🎉 Validated {len(new_answers_payload)} answers. Cached {len(correct_answers)} correct answers!" else: status = f"😔 Validated {len(new_answers_payload)} answers. None were correct this time." else: status = "All target questions already have correct answers cached!" return status, pd.DataFrame(results_log) def run_and_show_answers(profile: gr.OAuthProfile | None): """ Runs agent on questions and shows results without auto-validation (for manual review) """ if not running_on_hf: return "This function only available on HuggingFace Spaces", None username = f"{profile.username}" if profile else "unknown_user" api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" # 1. Instantiate Agent try: agent = GaiaAgent() except Exception as e: return f"Error initializing agent: {e}", None # 2. Fetch Questions try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "Fetched questions list is empty.", None except Exception as e: return f"Error fetching questions: {e}", None # 3. Load existing cache cache = load_answers_cache() # 4. Run agent on all target questions results_log = [] for idx in SOLVABLE_INDICES: if idx >= len(questions_data): continue item = questions_data[idx] task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue # Check if already cached if task_id in cache: results_log.append({ "Task ID": task_id, "Question": question_text[:100] + "...", "Answer": cache[task_id], "Status": "✅ CACHED" }) continue try: print(f"Processing question {idx+1}: {question_text[:100]}...") submitted_answer = agent(question_text) results_log.append({ "Task ID": task_id, "Question": question_text[:100] + "...", "Answer": submitted_answer, "Status": "🔍 REVIEW NEEDED" }) except Exception as e: results_log.append({ "Task ID": task_id, "Question": question_text[:100] + "...", "Answer": f"ERROR: {e}", "Status": "❌ FAILED" }) status = ( f"📋 Generated answers for manual review.\n" f"If an answer looks correct, you can manually cache it.\n" f"Known correct answers:\n" f"- Reversed text question: should be 'right'\n" f"- Mercedes Sosa albums: try different numbers if needed\n" f"- Dinosaur Featured Article: check nomination info" ) return status, pd.DataFrame(results_log) def submit_cached_answers(profile: gr.OAuthProfile | None): """ Submits all cached answers """ if not running_on_hf: return "Submission only available on HuggingFace Spaces", None if not profile: return "Please login to submit answers", None username = f"{profile.username}" space_id = os.getenv("SPACE_ID") agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" # Load cache cache = load_answers_cache() if not cache: return "No cached answers found", None print(f"📤 Preparing to submit {len(cache)} cached answers:") for task_id, answer in cache.items(): print(f" {task_id[:8]}... = {answer}") # Prepare submission - ensure answers are strings answers_payload = [] for task_id, answer in cache.items(): answers_payload.append({ "task_id": str(task_id), "submitted_answer": str(answer) }) submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers_payload } print(f"📡 Submitting as user: {username}") print(f"🔗 Agent code: {agent_code}") # Submit api_url = DEFAULT_API_URL submit_url = f"{api_url}/submit" try: response = requests.post(submit_url, json=submission_data, timeout=60) print(f"📊 Response status: {response.status_code}") response.raise_for_status() result_data = response.json() print(f"📈 API Response: {result_data}") final_status = ( f"🎉 Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Submitted {len(answers_payload)} cached answers\n" f"Message: {result_data.get('message', 'No message received.')}" ) # Show cached answers for reference results_log = [{"Task ID": task_id, "Cached Answer": answer, "Status": "✅ SUBMITTED"} for task_id, answer in cache.items()] return final_status, pd.DataFrame(results_log) except requests.exceptions.HTTPError as http_err: error_detail = f"HTTP {response.status_code}: {response.text}" return f"❌ Submission Failed: {error_detail}", pd.DataFrame([{"Task ID": task_id, "Cached Answer": answer, "Status": "❌ FAILED"} for task_id, answer in cache.items()]) except Exception as e: return f"❌ Submission Failed: {e}", pd.DataFrame([{"Task ID": task_id, "Cached Answer": answer, "Status": "❌ FAILED"} for task_id, answer in cache.items()]) def run_and_submit_all( profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ # --- Determine HF Space Runtime URL and Repo URL --- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code if running_on_hf: if profile: username= f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None else: username = "local_user" api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # 1. Instantiate Agent ( modify this part to create your agent) try: agent = GaiaAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # 2. Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except requests.exceptions.JSONDecodeError as e: print(f"Error decoding JSON response from questions endpoint: {e}") print(f"Response text: {response.text[:500]}") return f"Error decoding server response for questions: {e}", None except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None # 3. Run your Agent results_log = [] answers_payload = [] print(f"Running agent on {len(SOLVABLE_INDICES)} solvable questions...") for idx in SOLVABLE_INDICES: if idx >= len(questions_data): continue item = questions_data[idx] task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue try: print(f"Processing question {idx+1}: {question_text[:100]}...") submitted_answer = agent(question_text) print(f"Answer for question {idx+1}: {submitted_answer}") answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text[:150] + "..." if len(question_text) > 150 else question_text, "Submitted Answer": submitted_answer}) except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text[:150] + "..." if len(question_text) > 150 else question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare Submission submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) # 5. Submit if running_on_hf: print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df else: print(f"Agent finished locally on {len(answers_payload)} questions (not submitted).") results_df = pd.DataFrame(results_log) return f"Ran locally as '{username}', results below (no submission).", results_df # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# GAIA Agent") gr.Image(value="assets/AI_Programmer.png") gr.Markdown("An agent using smolagents to solve the GAIA Benchmark. By @ArturoNereu") if running_on_hf: gr.LoginButton() with gr.Row(): review_button = gr.Button("Run & Review Answers") cache_button = gr.Button("Run & Auto-Cache Correct") submit_cache_button = gr.Button("Submit Cached Answers") with gr.Row(): run_button = gr.Button("Run & Submit All (Direct)") # Manual caching section gr.Markdown("### Manual Answer Caching") with gr.Row(): task_id_input = gr.Textbox(label="Task ID", placeholder="e.g., 2d83110e-a098-4ebb-9987-066c06fa42d0") answer_input = gr.Textbox(label="Correct Answer", placeholder="e.g., right") manual_cache_button = gr.Button("Cache This Answer") else: run_button = gr.Button("Run Evaluation (Local)") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) if running_on_hf: review_button.click( fn=run_and_show_answers, outputs=[status_output, results_table] ) cache_button.click( fn=run_and_cache_answers, outputs=[status_output, results_table] ) submit_cache_button.click( fn=submit_cached_answers, outputs=[status_output, results_table] ) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) manual_cache_button.click( fn=lambda task_id, answer: (manually_cache_answer(task_id, answer), None), inputs=[task_id_input, answer_input], outputs=[status_output, results_table] ) else: run_button.click( fn=lambda: run_and_submit_all(None), outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("â„šī¸ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("â„šī¸ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False)