import torch from diffusers import FluxPipeline import gradio as gr # Load the FLUX pipeline pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.enable_model_cpu_offload() # For memory efficiency def generate_image(prompt): # Generate the image based on user prompt image = pipe(prompt, height=512, width=512, guidance_scale=3.5, num_inference_steps=50).images[0] return image # Create a Gradio interface interface = gr.Interface( fn=generate_image, inputs="text", outputs="image", title="FLUX Image Generator", description="Enter a text prompt to generate a futuristic 3D-style image using the FLUX model." ) if __name__ == "__main__": interface.launch()