EEE515-HW3 / app.py
Ash2505's picture
Update app.py
e18a03c verified
raw
history blame
8.68 kB
import cv2
import numpy as np
from PIL import Image, ImageFilter
import torch
import gradio as gr
from torchvision import transforms
from transformers import (
AutoModelForImageSegmentation,
DepthProImageProcessorFast,
DepthProForDepthEstimation,
)
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
# -----------------------------
# Load Segmentation Model (RMBG-2.0 by briaai)
# -----------------------------
seg_model = AutoModelForImageSegmentation.from_pretrained(
"briaai/RMBG-2.0", trust_remote_code=True
)
torch.set_float32_matmul_precision(["high", "highest"][0])
seg_model.to(device)
seg_model.eval()
# Define segmentation image size and transform
seg_image_size = (1024, 1024)
seg_transform = transforms.Compose([
transforms.Resize(seg_image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# -----------------------------
# Load Depth Estimation Model (DepthPro by Apple)
# -----------------------------
depth_processor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
depth_model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf")
depth_model.to(device)
depth_model.eval()
# -----------------------------
# Define the Segmentation-Based Blur Effect
# -----------------------------
def segmentation_blur_effect(input_image: Image.Image):
"""
Creates a segmentation mask using RMBG-2.0 and applies a Gaussian blur (sigma=15)
to the background while keeping the foreground sharp.
"""
# Resize input image for segmentation processing
imageResized = input_image.resize(seg_image_size)
input_tensor = seg_transform(imageResized).unsqueeze(0).to(device)
with torch.no_grad():
preds = seg_model(input_tensor)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Convert predicted mask to a PIL image and ensure it matches imageResized's size
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(imageResized.size)
# Convert mask to grayscale and threshold to create a binary mask
mask_np = np.array(mask.convert("L"))
_, maskBinary = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
# Convert the resized image to an OpenCV BGR array
img = cv2.cvtColor(np.array(imageResized), cv2.COLOR_RGB2BGR)
# Apply Gaussian blur (sigmaX=15, sigmaY=15)
blurredBg = cv2.GaussianBlur(np.array(imageResized), (0, 0), sigmaX=15, sigmaY=15)
# Create the inverse mask and convert it to 3 channels
maskInv = cv2.bitwise_not(maskBinary)
maskInv3 = cv2.cvtColor(maskInv, cv2.COLOR_GRAY2BGR)
# Extract the foreground and background using the mask
foreground = cv2.bitwise_and(img, cv2.bitwise_not(maskInv3))
background = cv2.bitwise_and(blurredBg, maskInv3)
# Combine foreground and background; convert back to RGB for display
finalImg = cv2.add(cv2.cvtColor(foreground, cv2.COLOR_BGR2RGB), background)
finalImg_pil = Image.fromarray(finalImg)
return finalImg_pil, mask
# -----------------------------
# Define the Depth-Based Lens Blur Effect with Slider-Controlled Thresholds
# -----------------------------
def lens_blur_effect(input_image: Image.Image, fg_threshold: float = 85, mg_threshold: float = 170):
"""
Uses DepthPro to estimate a depth map and applies a dynamic lens blur effect
by blending three versions of the image with increasing blur levels.
Parameters:
input_image: The original PIL image.
fg_threshold: Foreground threshold (0-255). Pixels with depth below this are considered foreground.
mg_threshold: Middleground threshold (0-255). Pixels with depth between fg_threshold and mg_threshold are middleground.
Returns:
depthImg: The computed depth map (PIL Image).
lensBlurImage: The final lens-blurred image (PIL Image).
mask_fg_img: Foreground depth mask.
mask_mg_img: Middleground depth mask.
mask_bg_img: Background depth mask.
"""
# Process the image with the depth estimation model
inputs = depth_processor(images=input_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = depth_model(**inputs)
post_processed_output = depth_processor.post_process_depth_estimation(
outputs, target_sizes=[(input_image.height, input_image.width)]
)
depth = post_processed_output[0]["predicted_depth"]
# Normalize depth to [0, 255]
depth = (depth - depth.min()) / (depth.max() - depth.min())
depth = depth * 255.
depth = depth.detach().cpu().numpy()
depth_map = depth.astype(np.uint8)
depthImg = Image.fromarray(depth_map)
# Convert input image to OpenCV BGR format
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
# Precompute blurred versions for different depth regions
img_foreground = img.copy() # No blur for foreground
img_middleground = cv2.GaussianBlur(img, (0, 0), sigmaX=7, sigmaY=7)
img_background = cv2.GaussianBlur(img, (0, 0), sigmaX=15, sigmaY=15)
print(depth_map)
depth_map /= depth_map.max()
# Use slider values as thresholds
threshold1 = fg_threshold # e.g., default 85
threshold2 = mg_threshold # e.g., default 170
# Create masks for foreground, middleground, and background based on depth
mask_fg = (depth_map < threshold1).astype(np.float32)
mask_mg = ((depth_map >= threshold1) & (depth_map < threshold2)).astype(np.float32)
mask_bg = (depth_map >= threshold2).astype(np.float32)
# Expand masks to 3 channels
mask_fg_3 = np.stack([mask_fg]*3, axis=-1)
mask_mg_3 = np.stack([mask_mg]*3, axis=-1)
mask_bg_3 = np.stack([mask_bg]*3, axis=-1)
# Blend the images using the masks
final_img = (img_foreground * mask_fg_3 +
img_middleground * mask_mg_3 +
img_background * mask_bg_3).astype(np.uint8)
final_img_rgb = cv2.cvtColor(final_img, cv2.COLOR_BGR2RGB)
lensBlurImage = Image.fromarray(final_img_rgb)
# Create mask images for display (scaled to 0-255)
mask_fg_img = Image.fromarray((mask_fg * 255).astype(np.uint8))
mask_mg_img = Image.fromarray((mask_mg * 255).astype(np.uint8))
mask_bg_img = Image.fromarray((mask_bg * 255).astype(np.uint8))
return depthImg, lensBlurImage, mask_fg_img, mask_mg_img, mask_bg_img
# -----------------------------
# Gradio App: Process Image and Display Multiple Effects
# -----------------------------
def process_image(input_image: Image.Image, fg_threshold: float, mg_threshold: float):
"""
Processes the uploaded image to generate:
1. Segmentation-based Gaussian blur effect.
2. Segmentation mask.
3. Depth map.
4. Depth-based lens blur effect.
5. Depth masks for foreground, middleground, and background.
The depth thresholds for foreground and middleground regions are adjustable via sliders.
"""
seg_blur, seg_mask = segmentation_blur_effect(input_image)
depth_map_img, lens_blur_img, mask_fg_img, mask_mg_img, mask_bg_img = lens_blur_effect(
input_image, fg_threshold, mg_threshold
)
return (
seg_blur,
seg_mask,
depth_map_img,
lens_blur_img,
mask_fg_img,
mask_mg_img,
mask_bg_img
)
title = "Blur Effects: Gaussian & Depth-Based Lens Blur with Adjustable Depth Thresholds"
description = (
"Upload an image to apply two distinct effects:\n\n"
"1. A segmentation-based Gaussian blur that blurs the background (using RMBG-2.0).\n"
"2. A depth-based lens blur effect that simulates realistic lens blur based on depth (using DepthPro).\n\n"
"Use the sliders to adjust the foreground and middleground depth thresholds."
)
demo = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Slider(minimum=0, maximum=1, step=0.01, value=0.33, label="Foreground Depth Threshold"),
gr.Slider(minimum=0, maximum=1, step=0.01, value=0.66, label="Middleground Depth Threshold")
],
outputs=[
gr.Image(type="pil", label="Segmentation-Based Blur"),
gr.Image(type="pil", label="Segmentation Mask"),
gr.Image(type="pil", label="Depth Map"),
gr.Image(type="pil", label="Depth-Based Lens Blur"),
gr.Image(type="pil", label="Foreground Depth Mask"),
gr.Image(type="pil", label="Middleground Depth Mask"),
gr.Image(type="pil", label="Background Depth Mask")
],
title=title,
description=description,
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch()