File size: 1,532 Bytes
ea26162
 
 
 
 
 
 
 
 
 
 
 
 
90d2b34
 
 
 
 
 
 
ea26162
 
 
 
 
 
 
 
 
 
 
 
90d2b34
 
ea26162
90d2b34
 
 
 
 
 
 
ea26162
 
90d2b34
ea26162
93ad5f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
from textblob import TextBlob

def sentiment_analysis(text: str) -> dict:
    """
    Analyze the sentiment of the given text.

    Args:
        text (str): The text to analyze

    Returns:
        dict: A dictionary containing polarity, subjectivity, and assessment
    """
    if not text.strip():
        return {
            "polarity": 0.0,
            "subjectivity": 0.0,
            "assessment": "neutral"
        }
    
    blob = TextBlob(text)
    sentiment = blob.sentiment
    
    return {
        "polarity": round(sentiment.polarity, 2),  # -1 (negative) to 1 (positive)
        "subjectivity": round(sentiment.subjectivity, 2),  # 0 (objective) to 1 (subjective)
        "assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
    }

# Create the Gradio interface
demo = gr.Interface(
    fn=sentiment_analysis,
    inputs=gr.Textbox(placeholder="Enter text to analyze...", label="Text Input"),
    outputs=gr.JSON(label="Sentiment Analysis Results"),
    title="Text Sentiment Analysis",
    description="Analyze the sentiment of text using TextBlob. Returns polarity (-1 to 1), subjectivity (0 to 1), and overall assessment.",
    examples=[
        ["I love this product! It's amazing!"],
        ["This is terrible and I hate it."],
        ["The weather is okay today."],
        ["Python is a programming language."]
    ]
)

# Launch the interface
if __name__ == "__main__":
    demo.launch(mcp_server=True)  # Make sure this is True