Spaces:
Running
Running
File size: 58,079 Bytes
6379cef 7d6276f 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 770a217 6e2dc75 6379cef 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 6379cef 7d6276f 6379cef 7d6276f 6379cef 47415c5 6379cef 770a217 6379cef 770a217 6379cef 47415c5 6379cef 7d6276f 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 7d6276f 6379cef 47415c5 6379cef 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 47415c5 6379cef 47415c5 6379cef 770a217 6379cef 770a217 6379cef 47415c5 6379cef 770a217 6379cef 47415c5 6379cef 770a217 47415c5 6379cef 770a217 6379cef 770a217 6379cef 47415c5 6379cef 47415c5 6379cef 7d6276f 6379cef 47415c5 6379cef 7d6276f 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 7d6276f 6379cef 770a217 6379cef 770a217 6379cef 770a217 6379cef 7d6276f 6379cef 47415c5 6379cef 47415c5 6379cef 770a217 6379cef 770a217 6379cef 770a217 6379cef 770a217 6379cef 770a217 6379cef 770a217 6379cef 47415c5 6379cef 47415c5 6379cef 7d6276f 6379cef 47415c5 7d6276f 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 7d6276f 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 6379cef 47415c5 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 6379cef 770a217 6379cef 7d6276f 6379cef 7d6276f 6379cef 770a217 7d6276f 770a217 6379cef 770a217 6379cef 770a217 6379cef 770a217 7d6276f 770a217 6379cef 770a217 6379cef 770a217 6379cef 770a217 7d6276f 6379cef 770a217 6379cef 770a217 6379cef 770a217 7d6276f 770a217 6379cef 770a217 6379cef 310a013 6379cef 770a217 6379cef 770a217 7d6276f 770a217 6379cef 7d6276f 6379cef 770a217 6379cef 7d6276f 770a217 6379cef 770a217 6379cef 7d6276f 6379cef 7d6276f 6379cef 770a217 6379cef 7d6276f 6379cef 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 8fea07e 7d6276f 770a217 7d6276f 3324365 7d6276f 3324365 770a217 8fea07e 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 7d6276f 770a217 6379cef 2bc7f54 770a217 7d6276f 770a217 7d6276f 770a217 2bc7f54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 |
#!/usr/bin/env python3
"""
GAIA Benchmark AI Agent - With HF Token Input Interface
=====================================================
Enhanced version with user token input for GAIA dataset access
"""
import gradio as gr
import torch
import json
import os
import logging
import time
import re
from datetime import datetime
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass
import pandas as pd
from pathlib import Path
# Core ML libraries
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig,
pipeline
)
from datasets import load_dataset
from huggingface_hub import HfApi, hf_hub_download, list_repo_files
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ================================
# ENHANCED AUTHENTICATION SETUP
# ================================
class HFTokenManager:
"""Manages HuggingFace token for GAIA dataset access"""
def __init__(self):
self.current_token = None
self.token_status = "No token set"
self.gaia_access_status = "Not tested"
def set_token(self, token: str) -> Tuple[str, str]:
"""Set and validate HF token"""
if not token or not token.strip():
self.current_token = None
self.token_status = "❌ No token provided"
self.gaia_access_status = "Not tested"
return self.token_status, self.gaia_access_status
token = token.strip()
# Basic token format validation
if not token.startswith('hf_'):
self.current_token = None
self.token_status = "❌ Invalid token format (should start with 'hf_')"
self.gaia_access_status = "Not tested"
return self.token_status, self.gaia_access_status
try:
# Test token validity
api = HfApi(token=token)
user_info = api.whoami()
self.current_token = token
self.token_status = f"✅ Valid token for user: {user_info['name']}"
# Test GAIA dataset access
try:
dataset_info = api.dataset_info("gaia-benchmark/GAIA", token=token)
available_splits = list(dataset_info.splits.keys()) if dataset_info.splits else []
self.gaia_access_status = f"✅ GAIA access confirmed (splits: {', '.join(available_splits)})"
except Exception as e:
if "401" in str(e) or "403" in str(e):
self.gaia_access_status = "❌ GAIA access denied - request access at: https://huggingface.co/datasets/gaia-benchmark/GAIA"
else:
self.gaia_access_status = f"⚠️ GAIA access test failed: {str(e)}"
return self.token_status, self.gaia_access_status
except Exception as e:
self.current_token = None
if "401" in str(e):
self.token_status = "❌ Invalid token - check your token is correct"
else:
self.token_status = f"❌ Token validation failed: {str(e)}"
self.gaia_access_status = "Not tested"
return self.token_status, self.gaia_access_status
def get_token(self) -> Optional[str]:
"""Get current valid token"""
return self.current_token
def test_gaia_access(self) -> Tuple[bool, str]:
"""Test GAIA dataset access with current token"""
if not self.current_token:
return False, "No valid token set"
try:
# Try to load a small sample from validation set
dataset = load_dataset(
"gaia-benchmark/GAIA",
split="validation",
token=self.current_token,
trust_remote_code=True
)
if len(dataset) > 0:
return True, f"✅ GAIA dataset accessible ({len(dataset)} validation questions)"
else:
return False, "Dataset appears empty"
except Exception as e:
return False, f"Access failed: {str(e)}"
# Global token manager
token_manager = HFTokenManager()
# Legacy HF_TOKEN setup with fallback
def setup_hf_authentication():
"""Setup HuggingFace authentication with environment fallback"""
env_token = os.environ.get('HF_TOKEN')
if env_token:
token_manager.set_token(env_token)
logger.info("✅ Found HF_TOKEN in environment")
return env_token
# Try HuggingFace CLI token
try:
from huggingface_hub import HfFolder
cli_token = HfFolder.get_token()
if cli_token:
token_manager.set_token(cli_token)
logger.info("✅ Found token from HuggingFace CLI")
return cli_token
except:
pass
# Try manual token file
token_path = os.path.expanduser("~/.cache/huggingface/token")
if os.path.exists(token_path):
try:
with open(token_path, 'r') as f:
file_token = f.read().strip()
if file_token:
token_manager.set_token(file_token)
logger.info("✅ Found token in cache file")
return file_token
except:
pass
logger.warning("⚠️ No HuggingFace token found - use interface to set token")
return None
# Initialize with environment token if available
INITIAL_TOKEN = setup_hf_authentication()
# ================================
# CORE DATA STRUCTURES (unchanged)
# ================================
@dataclass
class GAIAQuestion:
"""Structure for GAIA benchmark questions"""
task_id: str
question: str
level: int
final_answer: Optional[str] = None
file_name: Optional[str] = None
annotator_metadata: Optional[Dict] = None
@classmethod
def from_dict(cls, data: dict):
return cls(**{k: v for k, v in data.items() if k in cls.__annotations__})
@dataclass
class GAIAResponse:
"""Structure for GAIA responses"""
task_id: str
model_answer: str
reasoning_trace: str
final_answer: str
processing_time: float = 0.0
confidence_score: float = 0.0
# ================================
# GAIA PROMPT MANAGEMENT (unchanged)
# ================================
class GAIAPromptManager:
"""Manages GAIA-specific prompting and formatting"""
GAIA_SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER]
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
@staticmethod
def create_gaia_prompt(question: str) -> str:
"""Create properly formatted GAIA prompt"""
return f"{GAIAPromptManager.GAIA_SYSTEM_PROMPT}\n\nQuestion: {question}\n\nLet me think step by step:"
@staticmethod
def extract_final_answer(response: str) -> Tuple[str, str]:
"""Extract final answer and reasoning from model response"""
final_answer_pattern = r"FINAL ANSWER:\s*(.+?)(?:\n|$)"
match = re.search(final_answer_pattern, response, re.IGNORECASE | re.DOTALL)
if match:
final_answer = match.group(1).strip()
reasoning_end = match.start()
reasoning = response[:reasoning_end].strip()
else:
lines = response.strip().split('\n')
final_answer = lines[-1].strip() if lines else ""
reasoning = '\n'.join(lines[:-1]) if len(lines) > 1 else response
return final_answer, reasoning
# ================================
# MODEL MANAGER (unchanged)
# ================================
class HFSpaceModelManager:
"""Hugging Face Spaces optimized model manager"""
SPACE_MODELS = {
"Fast & Light": {
"name": "microsoft/DialoGPT-medium",
"size": "~345MB",
"speed": "Fast",
"quality": "Good",
"gpu_required": False
},
"Balanced": {
"name": "stabilityai/stablelm-zephyr-3b",
"size": "~3GB",
"speed": "Medium",
"quality": "Better",
"gpu_required": True
},
"High Quality": {
"name": "HuggingFaceH4/zephyr-7b-beta",
"size": "~7GB",
"speed": "Slower",
"quality": "Best",
"gpu_required": True
},
"Instruction Following": {
"name": "mistralai/Mistral-7B-Instruct-v0.1",
"size": "~7GB",
"speed": "Medium",
"quality": "Excellent",
"gpu_required": True
}
}
def __init__(self, model_choice: str = "Fast & Light"):
self.model_config = self.SPACE_MODELS[model_choice]
self.model_name = self.model_config["name"]
self.tokenizer = None
self.model = None
self.pipeline = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def load_model(self, progress_callback=None) -> str:
"""Load model with progress updates"""
try:
if progress_callback:
progress_callback(0.1, "Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if progress_callback:
progress_callback(0.3, "Configuring model...")
quantization_config = None
if self.device == "cuda" and "7b" in self.model_name.lower():
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
if progress_callback:
progress_callback(0.6, "Loading model weights...")
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
quantization_config=quantization_config,
device_map="auto" if self.device == "cuda" else None,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
trust_remote_code=True
)
if progress_callback:
progress_callback(0.9, "Creating pipeline...")
self.pipeline = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_new_tokens=384,
temperature=0.7,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id,
device=0 if self.device == "cuda" else -1
)
if progress_callback:
progress_callback(1.0, "Model loaded successfully!")
return f"✅ Model '{self.model_name}' loaded successfully on {self.device.upper()}"
except Exception as e:
error_msg = f"❌ Error loading model: {str(e)}"
logger.error(error_msg)
return error_msg
def generate_response(self, prompt: str, max_tokens: int = 384) -> str:
"""Generate response with error handling"""
if self.pipeline is None:
return "❌ Model not loaded. Please load a model first."
try:
max_input_length = 1000
if len(prompt) > max_input_length:
prompt = prompt[:max_input_length] + "..."
outputs = self.pipeline(
prompt,
max_new_tokens=max_tokens,
temperature=0.7,
do_sample=True,
return_full_text=False,
pad_token_id=self.tokenizer.eos_token_id
)
response = outputs[0]['generated_text'].strip()
return response
except Exception as e:
return f"❌ Error generating response: {str(e)}"
# ================================
# ENHANCED DATASET MANAGEMENT WITH TOKEN SUPPORT
# ================================
class GAIADatasetManager:
"""Manages GAIA dataset loading with user token support"""
@staticmethod
def load_gaia_dataset(split: str = "validation", max_questions: int = None, use_token: bool = True) -> Tuple[List[GAIAQuestion], str]:
"""Load GAIA dataset with token support"""
try:
logger.info(f"Attempting to load GAIA dataset split: {split}")
current_token = token_manager.get_token() if use_token else None
if use_token and not current_token:
logger.warning("No valid token found, falling back to sample questions")
questions = GAIADatasetManager.get_sample_questions()
return questions[:max_questions] if max_questions else questions, "⚠️ No authentication token - using sample questions"
# Test access first if using token
if use_token:
has_access, access_msg = token_manager.test_gaia_access()
if not has_access:
logger.warning(f"GAIA access test failed: {access_msg}")
questions = GAIADatasetManager.get_sample_questions()
return questions[:max_questions] if max_questions else questions, f"⚠️ {access_msg} - using sample questions"
# Load the actual dataset
dataset = load_dataset(
"gaia-benchmark/GAIA",
split=split,
token=current_token,
trust_remote_code=True
)
logger.info(f"Successfully loaded GAIA dataset: {len(dataset)} items")
questions = []
items = dataset[:max_questions] if max_questions else dataset
for i, item in enumerate(items):
# Handle different possible field names in GAIA dataset
task_id = (item.get('task_id') or
item.get('Task ID') or
item.get('id') or
f'gaia_{split}_{i:03d}')
question_text = (item.get('Question') or
item.get('question') or
item.get('input') or
'No question text available')
level = (item.get('Level') or
item.get('level') or
item.get('difficulty') or
1)
final_answer = (item.get('Final answer') or
item.get('final_answer') or
item.get('answer') or
item.get('target') or
None)
file_name = (item.get('file_name') or
item.get('File name') or
item.get('files') or
None)
annotator_metadata = (item.get('Annotator Metadata') or
item.get('annotator_metadata') or
item.get('metadata') or
None)
question = GAIAQuestion(
task_id=str(task_id),
question=str(question_text),
level=int(level),
final_answer=str(final_answer) if final_answer else None,
file_name=str(file_name) if file_name else None,
annotator_metadata=annotator_metadata
)
questions.append(question)
status = f"✅ Loaded {len(questions)} questions from GAIA {split} split"
logger.info(status)
return questions, status
except Exception as e:
error_msg = f"❌ Error loading GAIA dataset: {str(e)}"
logger.error(error_msg)
# Fallback to sample questions
logger.info("Falling back to sample questions")
questions = GAIADatasetManager.get_sample_questions()
return questions[:max_questions] if max_questions else questions, f"{error_msg} (Using sample questions instead)"
@staticmethod
def get_sample_questions() -> List[GAIAQuestion]:
"""Get sample questions for testing when GAIA dataset is not accessible"""
sample_data = [
{
"task_id": "sample_001",
"question": "What is the capital of France?",
"level": 1,
"final_answer": "Paris"
},
{
"task_id": "sample_002",
"question": "Calculate 144 divided by 12.",
"level": 1,
"final_answer": "12"
},
{
"task_id": "sample_003",
"question": "What is the largest planet in our solar system?",
"level": 1,
"final_answer": "Jupiter"
},
{
"task_id": "sample_004",
"question": "Convert 100 degrees Celsius to Fahrenheit.",
"level": 2,
"final_answer": "212"
},
{
"task_id": "sample_005",
"question": "List the first three even numbers greater than zero.",
"level": 1,
"final_answer": "2, 4, 6"
},
{
"task_id": "sample_006",
"question": "What year did the Berlin Wall fall?",
"level": 1,
"final_answer": "1989"
},
{
"task_id": "sample_007",
"question": "What is the chemical symbol for water?",
"level": 1,
"final_answer": "H2O"
},
{
"task_id": "sample_008",
"question": "How many continents are there?",
"level": 1,
"final_answer": "7"
},
{
"task_id": "sample_009",
"question": "What is 25% of 200?",
"level": 1,
"final_answer": "50"
},
{
"task_id": "sample_010",
"question": "In which year did World War II end?",
"level": 1,
"final_answer": "1945"
},
{
"task_id": "sample_011",
"question": "What is the square root of 144?",
"level": 2,
"final_answer": "12"
},
{
"task_id": "sample_012",
"question": "Name the three primary colors.",
"level": 1,
"final_answer": "red, blue, yellow"
}
]
return [GAIAQuestion.from_dict(data) for data in sample_data]
# ================================
# MAIN GAIA AGENT (updated with token support)
# ================================
class GAIASpaceAgent:
"""Main GAIA agent with token support"""
def __init__(self):
self.model_manager = None
self.prompt_manager = GAIAPromptManager()
self.current_model = None
self.evaluation_results: List[GAIAResponse] = []
def initialize_model(self, model_choice: str, progress=gr.Progress()) -> str:
"""Initialize model with progress tracking"""
try:
progress(0, desc="Initializing model manager...")
self.model_manager = HFSpaceModelManager(model_choice)
self.current_model = model_choice
def progress_callback(value, desc):
progress(value, desc=desc)
result = self.model_manager.load_model(progress_callback)
self.evaluation_results = []
return result
except Exception as e:
return f"❌ Failed to initialize model: {str(e)}"
def process_single_question(self, question_text: str, progress=gr.Progress()) -> Tuple[str, str, str, float]:
"""Process a single question with detailed output"""
if self.model_manager is None or self.model_manager.pipeline is None:
return "❌ No model loaded", "", "", 0.0
start_time = time.time()
try:
progress(0.2, desc="Creating GAIA prompt...")
prompt = self.prompt_manager.create_gaia_prompt(question_text)
progress(0.4, desc="Generating response...")
raw_response = self.model_manager.generate_response(prompt)
progress(0.8, desc="Extracting final answer...")
final_answer, reasoning = self.prompt_manager.extract_final_answer(raw_response)
processing_time = time.time() - start_time
progress(1.0, desc="Complete!")
return final_answer, raw_response, reasoning, processing_time
except Exception as e:
processing_time = time.time() - start_time
error_msg = f"❌ Error processing question: {str(e)}"
return error_msg, "", "", processing_time
def batch_evaluate(self, questions: List[GAIAQuestion], progress=gr.Progress()) -> Tuple[str, str, str]:
"""Evaluate multiple questions with progress tracking"""
if self.model_manager is None:
return "❌ No model loaded", "", ""
results = []
total_questions = len(questions)
progress(0, desc=f"Starting evaluation of {total_questions} questions...")
for i, question in enumerate(questions):
try:
progress((i + 1) / total_questions,
desc=f"Processing question {i + 1}/{total_questions}: {question.task_id}")
start_time = time.time()
prompt = self.prompt_manager.create_gaia_prompt(question.question)
raw_response = self.model_manager.generate_response(prompt)
final_answer, reasoning = self.prompt_manager.extract_final_answer(raw_response)
processing_time = time.time() - start_time
response = GAIAResponse(
task_id=question.task_id,
model_answer=raw_response,
reasoning_trace=reasoning,
final_answer=final_answer,
processing_time=processing_time
)
results.append(response)
self.evaluation_results.append(response)
except Exception as e:
logger.error(f"Error processing {question.task_id}: {e}")
error_response = GAIAResponse(
task_id=question.task_id,
model_answer=f"Error: {str(e)}",
reasoning_trace="Processing failed",
final_answer="ERROR",
processing_time=0.0
)
results.append(error_response)
self.evaluation_results.append(error_response)
summary = self._generate_summary(results)
detailed_results = self._generate_detailed_results(results, questions)
jsonl_content = self._generate_jsonl(results)
return summary, detailed_results, jsonl_content
def _generate_summary(self, results: List[GAIAResponse]) -> str:
"""Generate evaluation summary"""
total = len(results)
errors = sum(1 for r in results if r.final_answer == "ERROR")
successful = total - errors
avg_time = sum(r.processing_time for r in results) / total if total > 0 else 0
total_time = sum(r.processing_time for r in results)
auth_status = "✅ GAIA Access" if token_manager.get_token() else "⚠️ Sample Data Only"
summary = f"""
# 📊 GAIA Evaluation Summary
## Overall Statistics
- **Total Questions**: {total}
- **Successful**: {successful}
- **Errors**: {errors}
- **Success Rate**: {(successful/total*100):.1f}%
## Performance Metrics
- **Average Processing Time**: {avg_time:.2f}s
- **Total Processing Time**: {total_time:.2f}s
- **Questions per Minute**: {(total/(total_time/60)):.1f}
## Model Information
- **Model**: {self.current_model}
- **Device**: {self.model_manager.device.upper() if self.model_manager else 'Unknown'}
- **Authentication**: {auth_status}
"""
return summary
def _generate_detailed_results(self, results: List[GAIAResponse], questions: List[GAIAQuestion]) -> str:
"""Generate detailed results breakdown"""
detailed = "# 📋 Detailed Results\n\n"
for i, (result, question) in enumerate(zip(results, questions), 1):
status = "✅" if result.final_answer != "ERROR" else "❌"
detailed += f"""
## Question {i}: {question.task_id} {status}
**Question**: {question.question}
**Model Answer**: {result.final_answer}
**Expected Answer**: {question.final_answer if question.final_answer else 'N/A'}
**Processing Time**: {result.processing_time:.2f}s
**Level**: {question.level}
---
"""
return detailed
def _generate_jsonl(self, results: List[GAIAResponse]) -> str:
"""Generate JSONL format for download"""
jsonl_lines = []
for result in results:
line = {
"task_id": result.task_id,
"model_answer": result.model_answer,
"reasoning_trace": result.reasoning_trace
}
jsonl_lines.append(json.dumps(line))
return '\n'.join(jsonl_lines)
# ================================
# GLOBAL AGENT INSTANCE
# ================================
gaia_agent = GAIASpaceAgent()
# ================================
# ENHANCED GRADIO INTERFACE FUNCTIONS
# ================================
def set_hf_token_interface(token: str):
"""Interface function for setting HF token"""
token_status, gaia_status = token_manager.set_token(token)
return token_status, gaia_status, update_auth_status()
def update_auth_status():
"""Update authentication status display"""
if token_manager.get_token():
return f"""### 🔐 Authentication Status
{token_manager.token_status}
### 📊 GAIA Dataset Access
{token_manager.gaia_access_status}
### 💡 Usage
- ✅ Can access GAIA validation/test sets
- ✅ Can download official benchmark data
- ✅ Results suitable for leaderboard submission"""
else:
return """### 🔐 Authentication Status
❌ No valid HF token set
### 📊 GAIA Dataset Access
❌ Cannot access GAIA dataset - using sample questions
### 💡 To Access GAIA Dataset:
1. **Get Access**: Visit https://huggingface.co/datasets/gaia-benchmark/GAIA
2. **Get Token**: Visit https://huggingface.co/settings/tokens
3. **Set Token**: Enter your token in the field above"""
def load_model_interface(model_choice: str, progress=gr.Progress()):
"""Interface function for model loading"""
return gaia_agent.initialize_model(model_choice, progress)
def single_question_interface(question: str, progress=gr.Progress()):
"""Interface function for single question processing"""
if not question.strip():
return "Please enter a question", "", "", "0.00s"
final_answer, full_response, reasoning, proc_time = gaia_agent.process_single_question(question, progress)
return (
final_answer,
full_response,
reasoning,
f"{proc_time:.2f}s"
)
def batch_evaluate_interface(dataset_choice: str, max_questions: int, progress=gr.Progress()):
"""Interface function for batch evaluation"""
if gaia_agent.model_manager is None:
return "❌ Please load a model first", "", ""
progress(0.1, desc="Loading dataset...")
if dataset_choice == "Sample Questions":
questions = GAIADatasetManager.get_sample_questions()
status_msg = f"✅ Loaded {len(questions)} sample questions"
else:
use_token = dataset_choice in ["GAIA Validation Set", "GAIA Test Set"]
split = "test" if dataset_choice == "GAIA Test Set" else "validation"
questions, status_msg = GAIADatasetManager.load_gaia_dataset(split, max_questions, use_token)
if max_questions and len(questions) > max_questions:
questions = questions[:max_questions]
progress(0.2, desc=f"{status_msg}. Starting evaluation...")
summary, detailed, jsonl = gaia_agent.batch_evaluate(questions, progress)
return summary, detailed, jsonl
def get_model_info(model_choice: str):
"""Get information about selected model"""
if model_choice in HFSpaceModelManager.SPACE_MODELS:
config = HFSpaceModelManager.SPACE_MODELS[model_choice]
return f"""
**Model**: {config['name']}
**Size**: {config['size']}
**Speed**: {config['speed']}
**Quality**: {config['quality']}
**GPU Required**: {'Yes' if config['gpu_required'] else 'No'}
"""
return "Model information not available"
def preview_gaia_interface():
"""Interface for previewing GAIA dataset with token support"""
if not token_manager.get_token():
return """
## ⚠️ GAIA Dataset Preview - Authentication Required
To access the GAIA dataset, you need:
1. **Request Access**: https://huggingface.co/datasets/gaia-benchmark/GAIA
2. **Get Token**: https://huggingface.co/settings/tokens
3. **Set Token**: Enter your token in the Authentication tab above
### 📋 Sample Questions Available:
We provide 12 sample questions for testing your setup without authentication.
Use "Sample Questions" in the evaluation tabs to get started!
"""
try:
# Test access and get basic info
has_access, access_msg = token_manager.test_gaia_access()
if not has_access:
return f"""
## ❌ GAIA Dataset Access Failed
**Error**: {access_msg}
### 🔧 Troubleshooting:
1. Check your HF_TOKEN is valid
2. Ensure you have access to GAIA dataset
3. Try refreshing your token
### 🔄 Alternative:
Use "Sample Questions" for testing without authentication.
"""
# Try to get some preview data
dataset = load_dataset(
"gaia-benchmark/GAIA",
split="validation",
token=token_manager.get_token(),
trust_remote_code=True
)
# Analyze the dataset
total_questions = len(dataset)
# Get level distribution
levels = {}
sample_questions = []
for i, item in enumerate(dataset):
level = item.get('Level', 1)
levels[level] = levels.get(level, 0) + 1
# Collect a few sample questions
if len(sample_questions) < 3:
question_text = item.get('Question', 'No question')
if len(question_text) > 100:
question_text = question_text[:100] + "..."
sample_questions.append(f"- **Level {level}**: {question_text}")
level_dist = "\n".join([f"- **Level {k}**: {v} questions" for k, v in sorted(levels.items())])
sample_text = "\n".join(sample_questions)
return f"""
## ✅ GAIA Dataset Preview - Access Confirmed
### 📊 Dataset Statistics:
- **Total Questions**: {total_questions}
- **Available Split**: validation (development set)
### 📈 Level Distribution:
{level_dist}
### 📋 Sample Questions:
{sample_text}
### 🎯 Ready for Evaluation!
You can now use "GAIA Validation Set" or "GAIA Test Set" in the evaluation tabs to test your model on real GAIA questions.
"""
except Exception as e:
return f"""
## ❌ Error Previewing GAIA Dataset
**Error**: {str(e)}
### 🔄 Recommendations:
1. Use "Sample Questions" for immediate testing
2. Check your authentication setup
3. Try again in a few minutes
### 📞 Need Help?
- GAIA Dataset: https://huggingface.co/datasets/gaia-benchmark/GAIA
- HF Authentication: https://huggingface.co/docs/hub/security-tokens
"""
# ================================
# ENHANCED GRADIO APP CREATION WITH TOKEN INPUT
# ================================
def create_gaia_app():
"""Create the main Gradio application with token input"""
with gr.Blocks(
title="GAIA Benchmark AI Agent",
theme=gr.themes.Soft(),
css="""
.gradio-container {
font-family: 'Arial', sans-serif;
}
.main-header {
text-align: center;
background: linear-gradient(45deg, #2196F3, #21CBF3);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 20px;
}
.auth-section {
background: #f8f9fa;
padding: 15px;
border-radius: 10px;
border-left: 4px solid #2196F3;
margin: 10px 0;
}
"""
) as app:
# Header
gr.HTML("""
<div class="main-header">
🧠 GAIA Benchmark AI Agent
</div>
<p style="text-align: center; font-size: 1.2em; color: #666;">
Evaluate AI models on the GAIA benchmark with step-by-step reasoning
</p>
""")
with gr.Tabs():
# ===============================
# TAB 1: AUTHENTICATION
# ===============================
with gr.Tab("🔐 Authentication"):
gr.HTML('<div class="auth-section">')
gr.Markdown("## HuggingFace Token Setup")
gr.Markdown("""
**To access the GAIA dataset, you need:**
1. **Request access** to GAIA dataset
2. **Get your HuggingFace token**
3. **Enter token below**
""")
gr.HTML('</div>')
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### 🔑 Enter Your HuggingFace Token")
hf_token_input = gr.Textbox(
label="HuggingFace Token",
placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
type="password",
info="Get your token from https://huggingface.co/settings/tokens",
value=""
)
set_token_btn = gr.Button("🔓 Set Token & Test Access", variant="primary")
with gr.Row():
token_status = gr.Textbox(
label="Token Status",
value="No token set",
interactive=False,
lines=1
)
gaia_access_status = gr.Textbox(
label="GAIA Access Status",
value="Not tested",
interactive=False,
lines=1
)
with gr.Column(scale=1):
auth_status_display = gr.Markdown(
value=update_auth_status(),
label="Authentication Status"
)
gr.Markdown("""
### 📋 Step-by-Step Setup Guide
#### 1. Request GAIA Dataset Access
- Visit: https://huggingface.co/datasets/gaia-benchmark/GAIA
- Click **"Request Access"** button
- Fill out the form explaining your use case
- Wait for approval (usually within 24 hours)
#### 2. Get Your HuggingFace Token
- Go to: https://huggingface.co/settings/tokens
- Click **"New token"**
- Choose **"Read"** permissions
- Copy the token (starts with `hf_`)
#### 3. Enter Token Above
- Paste your token in the field above
- Click **"Set Token & Test Access"**
- Verify both token validity and GAIA access
### ⚠️ Token Security
- Your token is only stored in memory during this session
- Never share your token publicly
- You can revoke tokens at any time from HuggingFace settings
### 🔄 Without Authentication
- You can still use **12 sample questions** for testing
- All features work except real GAIA dataset access
- Perfect for getting familiar with the interface
""")
# Set token event
set_token_btn.click(
fn=set_hf_token_interface,
inputs=[hf_token_input],
outputs=[token_status, gaia_access_status, auth_status_display]
)
# ===============================
# TAB 2: MODEL SETUP
# ===============================
with gr.Tab("🔧 Model Setup"):
gr.Markdown("## Choose and Load Your Model")
with gr.Row():
with gr.Column(scale=2):
model_dropdown = gr.Dropdown(
choices=list(HFSpaceModelManager.SPACE_MODELS.keys()),
value="Fast & Light",
label="Select Model",
info="Choose based on your quality vs speed preference"
)
model_info = gr.Markdown(
value=get_model_info("Fast & Light"),
label="Model Information"
)
load_btn = gr.Button("🚀 Load Model", variant="primary", size="lg")
with gr.Column(scale=1):
gpu_info = gr.Markdown(f"""
### 🖥️ System Info
**CUDA Available**: {torch.cuda.is_available()}
{f"**GPU**: {torch.cuda.get_device_name(0)}" if torch.cuda.is_available() else "**Device**: CPU"}
### 🔐 Authentication Status
{"✅ Token Set" if token_manager.get_token() else "⚠️ No Token - Go to Authentication tab"}
""")
model_status = gr.Textbox(
label="Model Status",
value="No model loaded",
interactive=False
)
# Update model info when selection changes
model_dropdown.change(
fn=get_model_info,
inputs=[model_dropdown],
outputs=[model_info]
)
# Load model when button clicked
load_btn.click(
fn=load_model_interface,
inputs=[model_dropdown],
outputs=[model_status]
)
# ===============================
# TAB 3: SINGLE QUESTION
# ===============================
with gr.Tab("❓ Single Question"):
gr.Markdown("## Test Individual Questions")
with gr.Row():
with gr.Column():
question_input = gr.Textbox(
label="Enter your question",
placeholder="e.g., What is the capital of France?",
lines=3
)
process_btn = gr.Button("🤔 Process Question", variant="primary")
# Example questions
gr.Markdown("### 💡 Example Questions:")
example_questions = [
"What is the capital of France?",
"Calculate 144 divided by 12",
"What is the largest planet in our solar system?",
"Convert 100 degrees Celsius to Fahrenheit"
]
for example in example_questions:
gr.Button(f"📝 {example}", size="sm").click(
lambda x=example: x,
outputs=[question_input]
)
with gr.Column():
final_answer_output = gr.Textbox(
label="🎯 Final Answer",
interactive=False
)
processing_time = gr.Textbox(
label="⏱️ Processing Time",
interactive=False
)
with gr.Accordion("🧠 Full Response", open=False):
full_response = gr.Textbox(
label="Complete Model Response",
lines=8,
interactive=False
)
with gr.Accordion("🔍 Reasoning Trace", open=False):
reasoning_trace = gr.Textbox(
label="Step-by-step Reasoning",
lines=6,
interactive=False
)
# Process single question
process_btn.click(
fn=single_question_interface,
inputs=[question_input],
outputs=[final_answer_output, full_response, reasoning_trace, processing_time]
)
# ===============================
# TAB 4: BATCH EVALUATION
# ===============================
with gr.Tab("📊 Batch Evaluation"):
gr.Markdown("## Evaluate Multiple Questions")
with gr.Row():
dataset_choice = gr.Radio(
choices=["Sample Questions", "GAIA Validation Set", "GAIA Test Set"],
value="Sample Questions",
label="Dataset Choice",
info="Sample Questions work without authentication"
)
max_questions = gr.Slider(
minimum=1,
maximum=300,
value=10,
step=1,
label="Max Questions",
info="Number of questions to evaluate"
)
evaluate_btn = gr.Button("🚀 Start Batch Evaluation", variant="primary", size="lg")
# Dataset info display
with gr.Row():
gr.Markdown("""
### 📊 Dataset Information
**Sample Questions (No Auth Required)**:
- 12 curated questions for testing
- Works without HuggingFace token
- Perfect for setup verification
**GAIA Validation Set (Auth Required)**:
- ~165 official validation questions
- Good for model development
- May include reference answers
**GAIA Test Set (Auth Required)**:
- ~450 official test questions
- Used for leaderboard submissions
- Answers typically hidden (blind evaluation)
""")
with gr.Row():
with gr.Column():
summary_output = gr.Markdown(
label="📊 Evaluation Summary",
value="No evaluation completed yet"
)
with gr.Column():
download_output = gr.File(
label="💾 Download Results (JSONL)",
visible=False
)
with gr.Accordion("📋 Detailed Results", open=False):
detailed_output = gr.Markdown(
value="Run an evaluation to see detailed results"
)
# Batch evaluation with download
def batch_eval_with_download(*args):
summary, detailed, jsonl_content = batch_evaluate_interface(*args)
# Save JSONL for download
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
dataset_name = args[0].lower().replace(" ", "_")
filename = f"gaia_{dataset_name}_{timestamp}.jsonl"
with open(filename, 'w') as f:
f.write(jsonl_content)
return summary, detailed, filename
evaluate_btn.click(
fn=batch_eval_with_download,
inputs=[dataset_choice, max_questions],
outputs=[summary_output, detailed_output, download_output]
).then(
lambda: gr.update(visible=True),
outputs=[download_output]
)
# ===============================
# TAB 5: DATASET PREVIEW
# ===============================
with gr.Tab("📋 Dataset Preview"):
gr.Markdown("## GAIA Dataset Information")
preview_btn = gr.Button("🔍 Preview GAIA Dataset", variant="primary")
preview_output = gr.Markdown(
value="Click above to preview the GAIA dataset structure and your access status"
)
gr.Markdown("""
## 🎯 About GAIA Benchmark
**GAIA (General AI Assistant)** is a comprehensive benchmark for evaluating AI assistants on real-world tasks that require:
### 🧠 Key Capabilities Tested:
- **Multi-step reasoning**: Complex logical thinking and problem decomposition
- **Tool use**: Web browsing, calculations, file processing
- **Multi-modality**: Text, images, PDFs, spreadsheets, audio files
- **Real-world knowledge**: Current events, specialized domains
- **Following instructions**: Precise output formatting
### 📊 Dataset Structure:
- **Total Questions**: ~450 in test set, ~165 in validation set
- **Difficulty Levels**:
- Level 1: Basic questions (≤30 seconds for humans)
- Level 2: Intermediate (≤5 minutes for humans)
- Level 3: Advanced (≤30 minutes for humans)
- **Question Types**: Factual, mathematical, reasoning, research tasks
### 🏆 Current Leaderboard (Top Performers):
1. **GPT-4 + plugins**: ~20% accuracy
2. **Claude-3 Opus**: ~15% accuracy
3. **Gemini Pro**: ~12% accuracy
4. **Human Performance**: ~92% accuracy
### 📁 File Types in GAIA:
- Text documents, PDFs
- Images (charts, diagrams, photos)
- Spreadsheets (CSV, Excel)
- Audio files
- Web pages and URLs
### 🎯 Evaluation Criteria:
- **Exact Match**: Final answer must match exactly
- **Case Sensitive**: Proper formatting required
- **No Partial Credit**: Binary scoring (correct/incorrect)
- **Format Specific**: Numbers vs strings vs lists handled differently
### 🔬 Research Impact:
- Used in 50+ research papers
- Standard benchmark for assistant evaluation
- Drives development of reasoning capabilities
- Identifies gaps in current AI systems
""")
preview_btn.click(
fn=preview_gaia_interface,
outputs=[preview_output]
)
# ===============================
# TAB 6: HELP & INFO
# ===============================
with gr.Tab("ℹ️ Help & Info"):
gr.Markdown("""
# 🧠 GAIA Benchmark AI Agent - Complete Guide
## 🎯 Quick Start Guide
### 1. **Authentication** (For GAIA Dataset Access)
- Go to "Authentication" tab
- Get access to GAIA dataset: https://huggingface.co/datasets/gaia-benchmark/GAIA
- Get HF token: https://huggingface.co/settings/tokens
- Enter token and test access
### 2. **Model Setup** (Required!)
- Go to "Model Setup" tab
- Choose a model based on your needs:
- **Fast & Light**: Good for testing, works on CPU
- **High Quality**: Best results, requires GPU
- Click "Load Model" and wait for success message
### 3. **Test Your Setup**
- Go to "Single Question" tab
- Try example questions like "What is the capital of France?"
- Verify your model responds correctly
### 4. **Batch Evaluation**
- Go to "Batch Evaluation" tab
- Start with "Sample Questions" (no auth needed)
- Try 5-10 questions first
- Download results for analysis
### 5. **GAIA Dataset**
- Use "Dataset Preview" to check access
- Try "GAIA Validation Set" for development
- Use "GAIA Test Set" for leaderboard submission
## 📊 Dataset Options Explained
### Sample Questions (Always Available)
- **12 curated questions** for testing
- **No authentication required**
- Perfect for verifying your setup
- Good for debugging and development
### GAIA Validation Set (Requires Auth)
- **~165 official questions** from GAIA
- Good for **model development** and tuning
- May include reference answers for comparison
- Faster to evaluate than full test set
### GAIA Test Set (Requires Auth)
- **~450 official questions** from GAIA
- Used for **official leaderboard** submissions
- Answers typically hidden (blind evaluation)
- Takes longer but gives official ranking
## 🏆 Performance Expectations
| Model Type | Expected Accuracy | Use Case |
|------------|------------------|----------|
| **Top Commercial** | 15-20% | GPT-4 + plugins, research |
| **Strong Models** | 10-15% | Claude-3, Gemini Pro |
| **Good Open Source** | 5-10% | Llama-2-70B, Mixtral |
| **Smaller Models** | 1-5% | 7B parameter models |
| **Humans** | ~92% | Reference performance |
## 🔧 Troubleshooting
### Authentication Issues
- **"Invalid token"**: Check token format (starts with `hf_`)
- **"Access denied"**: Request GAIA dataset access first
- **"Token not found"**: Get token from HF settings
### Model Issues
- **Out of Memory**: Try "Fast & Light" model
- **CUDA Errors**: Restart and use CPU mode
- **Slow loading**: Normal for large models, be patient
### Evaluation Issues
- **No responses**: Ensure model is loaded first
- **All errors**: Check model compatibility
- **Slow evaluation**: Normal for complex questions
## 📁 Output Files
### JSONL Format (Leaderboard Ready)
```json
{"task_id": "gaia_001", "model_answer": "Complete response...", "reasoning_trace": "Step by step..."}
{"task_id": "gaia_002", "model_answer": "Complete response...", "reasoning_trace": "Step by step..."}
```
### Key Fields:
- **task_id**: Unique question identifier
- **model_answer**: Full model response
- **reasoning_trace**: Step-by-step thinking process
## 🚀 Best Practices
### For Accuracy:
1. **Use best model**: Don't compromise on model quality
2. **Test prompts**: Verify prompt format works
3. **Check reasoning**: Review step-by-step traces
4. **Analyze failures**: Learn from incorrect answers
### For Efficiency:
1. **Start small**: Test with 5-10 questions first
2. **Monitor resources**: Watch GPU/CPU usage
3. **Save progress**: Download results frequently
4. **Use appropriate model**: Match model to available hardware
### For Leaderboard:
1. **Use test set**: Official ranking requires test set
2. **Validate format**: Check JSONL is properly formatted
3. **Document approach**: Note any special techniques
4. **Submit promptly**: Upload to official leaderboard
## 🔗 Important Links
- **GAIA Dataset**: https://huggingface.co/datasets/gaia-benchmark/GAIA
- **GAIA Leaderboard**: https://huggingface.co/spaces/gaia-benchmark/leaderboard
- **GAIA Paper**: https://arxiv.org/abs/2311.12983
- **HuggingFace Tokens**: https://huggingface.co/settings/tokens
- **Authentication Guide**: https://huggingface.co/docs/hub/security-tokens
""")
return app
# ================================
# MAIN APPLICATION
# ================================
if __name__ == "__main__":
# Print startup information
print("🧠 GAIA Benchmark AI Agent Starting...")
print(f"🔐 Environment Token: {'✅ Found' if INITIAL_TOKEN else '⚠️ Not found'}")
print(f"🖥️ CUDA Available: {'✅ Yes' if torch.cuda.is_available() else '❌ No (CPU only)'}")
if torch.cuda.is_available():
print(f"🎮 GPU: {torch.cuda.get_device_name(0)}")
print("""
💡 Token Setup Options:
1. Environment: export HF_TOKEN=hf_your_token
2. Interface: Enter token in Authentication tab
3. CLI: huggingface-cli login
""")
app = create_gaia_app()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |