File size: 34,909 Bytes
558e09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
# GAIA Dataset - Final Working Implementation for 300 Questions
# Based on actual GAIA dataset structure: 2023_all config with test split

import os
import json
import pandas as pd
import numpy as np
import time
from typing import Dict, List, Tuple
import requests
from datetime import datetime
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import warnings
warnings.filterwarnings('ignore')

# Install required packages
print("📦 Installing required packages...")
import subprocess
import sys

packages = [
    "langchain-community", "langchain-core", "langchain-google-genai", 
    "langchain-groq", "langchain-huggingface", "langgraph", "supabase", 
    "sentence-transformers", "tavily-python", "wikipedia", "arxiv", 
    "python-dotenv", "gradio", "datasets", "huggingface_hub"
]

for package in packages:
    subprocess.check_call([sys.executable, "-m", "pip", "install", "-q", package])

print("✅ All packages installed!")

# Import libraries
from dotenv import load_dotenv
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from supabase.client import Client, create_client
from datasets import load_dataset
from huggingface_hub import login, hf_hub_download

# ================================
# API KEYS SETUP
# ================================

print("🔑 Setting up API keys...")

API_KEYS = {
    'GROQ_API_KEY': "",
    'TAVILY_API_KEY': "",
    'SUPABASE_URL': '',
    'SUPABASE_SERVICE_KEY': '',
    'GOOGLE_API_KEY': '',
    'HUGGINGFACEHUB_API_TOKEN': 'h'
}

for key, value in API_KEYS.items():
    os.environ[key] = value

print(" API keys configured!")

# HuggingFace login
try:
    login(token=API_KEYS['HUGGINGFACEHUB_API_TOKEN'])
    print("HuggingFace authentication successful!")
except Exception as e:
    print(f"HuggingFace login warning: {e}")

# ================================
# FINAL GAIA DATASET LOADER
# ================================

class FinalGAIALoader:
    """Final GAIA dataset loader using correct configuration"""
    
    def __init__(self):
        self.dataset = None
        self.test_data = []
        
    def load_gaia_dataset(self):
        """Load GAIA dataset using the correct configuration"""
        print("Loading GAIA dataset with correct configuration...")
        
        try:
            # Based on the dataset code, use "2023_all" config
            print("Loading with config '2023_all'...")
            
            self.dataset = load_dataset(
                "gaia-benchmark/GAIA", 
                "2023_all",
                token=True,
                trust_remote_code=True  # Important for custom dataset scripts
            )
            
            print(f"Dataset loaded successfully!")
            print(f"Available splits: {list(self.dataset.keys())}")
            
            if 'test' in self.dataset:
                self.test_data = list(self.dataset['test'])
                print(f"Loaded {len(self.test_data)} test questions")
                
                # Analyze the data structure
                self._analyze_data_structure()
                return True
            else:
                print("No test split found")
                return False
                
        except Exception as e:
            print(f"Primary method failed: {e}")
            
            # Fallback: Try without trust_remote_code
            try:
                print("Trying fallback method...")
                self.dataset = load_dataset(
                    "gaia-benchmark/GAIA", 
                    "2023_all",
                    token=True
                )
                
                if 'test' in self.dataset:
                    self.test_data = list(self.dataset['test'])
                    print(f"Fallback successful! Loaded {len(self.test_data)} questions")
                    self._analyze_data_structure()
                    return True
                    
            except Exception as e2:
                print(f"Fallback also failed: {e2}")
                
                # Final fallback: Manual download
                return self._manual_download_fallback()
    
    def _manual_download_fallback(self):
        """Manual download fallback method"""
        print("Attempting manual download...")
        
        try:
            # Download the metadata file directly
            metadata_file = hf_hub_download(
                repo_id="gaia-benchmark/GAIA",
                filename="2023/test/metadata.jsonl",
                repo_type="dataset",
                token=API_KEYS['HUGGINGFACEHUB_API_TOKEN']
            )
            
            # Read the JSONL file
            test_questions = []
            with open(metadata_file, 'r', encoding='utf-8') as f:
                for line in f:
                    if line.strip():
                        test_questions.append(json.loads(line))
            
            self.test_data = test_questions
            print(f"Manual download successful! Loaded {len(test_questions)} questions")
            self._analyze_data_structure()
            return True
            
        except Exception as e:
            print(f"Manual download failed: {e}")
            return False
    
    def _analyze_data_structure(self):
        """Analyze the structure of loaded GAIA data"""
        if not self.test_data:
            return
        
        print(f"\n GAIA Data Analysis:")
        print(f"Total questions: {len(self.test_data)}")
        
        # Show sample item structure
        if self.test_data:
            sample = self.test_data[0]
            print(f"Sample item keys: {list(sample.keys())}")
            
            # Level distribution
            levels = [item.get('Level') for item in self.test_data]
            level_counts = pd.Series(levels).value_counts().sort_index()
            print(f"\nLevel distribution:")
            for level, count in level_counts.items():
                print(f"  Level {level}: {count} questions")
            
            # Sample questions
            print(f"\nSample questions by level:")
            for level in sorted(level_counts.index):
                level_questions = [item for item in self.test_data if item.get('Level') == level]
                if level_questions:
                    sample_q = level_questions[0]['Question'][:100]
                    print(f"  Level {level}: {sample_q}...")
    
    def filter_300_questions(self, level1_ratio=0.6, level2_ratio=0.25, level3_ratio=0.15):
        """Filter exactly 300 questions with specified ratios"""
        
        if not self.test_data:
            print("No test data available")
            return []
        
        total_questions = 300
        level1_count = int(total_questions * level1_ratio)  # 180
        level2_count = int(total_questions * level2_ratio)  # 75
        level3_count = total_questions - level1_count - level2_count  # 45
        
        print(f"Filtering {total_questions} questions:")
        print(f"  Level 1: {level1_count} questions ({level1_ratio*100:.0f}%)")
        print(f"  Level 2: {level2_count} questions ({level2_ratio*100:.0f}%)")
        print(f"  Level 3: {level3_count} questions ({level3_ratio*100:.0f}%)")
        
        # Group by level
        level_groups = {1: [], 2: [], 3: []}
        for item in self.test_data:
            level = item.get('Level')
            if level in level_groups:
                level_groups[level].append(item)
        
        # Check availability
        print(f"\nAvailable questions by level:")
        for level in [1, 2, 3]:
            available = len(level_groups[level])
            print(f"  Level {level}: {available} available")
        
        # Sample questions
        filtered_questions = []
        np.random.seed(42)  # For reproducibility
        
        for level, target_count in [(1, level1_count), (2, level2_count), (3, level3_count)]:
            available = len(level_groups[level])
            
            if available >= target_count:
                # Random sample
                sampled_indices = np.random.choice(available, size=target_count, replace=False)
                sampled = [level_groups[level][i] for i in sampled_indices]
                filtered_questions.extend(sampled)
                print(f"Level {level}: Selected {target_count} from {available}")
            else:
                # Take all available
                filtered_questions.extend(level_groups[level])
                print(f"Level {level}: Only {available} available (needed {target_count})")
        
        print(f"\n📊 Total filtered: {len(filtered_questions)} questions")
        
        # Verify final distribution
        final_levels = [q['Level'] for q in filtered_questions]
        final_dist = pd.Series(final_levels).value_counts().sort_index()
        print(f"Final distribution:")
        for level, count in final_dist.items():
            percentage = (count / len(filtered_questions)) * 100
            print(f"  Level {level}: {count} questions ({percentage:.1f}%)")
        
        return filtered_questions
    
    def create_dataframe(self, questions):
        """Create DataFrame from filtered questions"""
        if not questions:
            return pd.DataFrame()
        
        data = []
        for i, item in enumerate(questions):
            data.append({
                'id': i,
                'task_id': item.get('task_id', f'gaia_{i}'),
                'question': item.get('Question', ''),
                'level': item.get('Level', 1),
                'final_answer': item.get('Final answer', ''),
                'file_name': item.get('file_name', ''),
                'annotator_metadata': item.get('Annotator Metadata', {})
            })
        
        df = pd.DataFrame(data)
        print(f"📋 Created DataFrame with {len(df)} questions")
        return df

# ================================
# ENHANCED SYSTEM PROMPT
# ================================

SYSTEM_PROMPT = """
You are an expert research assistant designed to answer complex, multi-step questions from the GAIA benchmark.
You have access to powerful tools for web search, Wikipedia, arXiv research, and mathematical calculations.

Key Instructions:
1. Read the question carefully and identify what information you need
2. Use tools strategically - web search for current info, Wikipedia for general knowledge, arXiv for research
3. For mathematical questions, use the calculation tools
4. Think step-by-step and show your reasoning
5. Be precise and accurate in your final answer

Answer Format:
- Provide clear reasoning and methodology
- Show any calculations or research steps
- End with: FINAL ANSWER: [exact answer]
- Keep the final answer concise and precise
- Match the format requested (number, name, list, etc.)

Examples:
Question: What is the population of Tokyo according to the latest census?
I need to search for the most recent population data for Tokyo.
[uses web_search("Tokyo population latest census")]
Based on the search results, the latest census shows...
FINAL ANSWER: 13960000

Question: What is 157 * 238?
I need to calculate 157 multiplied by 238.
[uses multiply(157, 238)]
FINAL ANSWER: 37366
"""

# ================================
# ENHANCED TOOLS
# ================================

@tool
def multiply(a: float, b: float) -> float:
    """Multiply two numbers."""
    return a * b

@tool
def add(a: float, b: float) -> float:
    """Add two numbers."""
    return a + b

@tool
def subtract(a: float, b: float) -> float:
    """Subtract two numbers."""
    return a - b

@tool
def divide(a: float, b: float) -> float:
    """Divide two numbers."""
    if abs(b) < 1e-10:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def power(a: float, b: float) -> float:
    """Calculate a raised to the power of b."""
    return a ** b

@tool
def square_root(a: float) -> float:
    """Calculate the square root of a number."""
    if a < 0:
        raise ValueError("Cannot calculate square root of negative number.")
    return a ** 0.5

@tool
def modulo(a: float, b: float) -> float:
    """Calculate a modulo b (remainder after division)."""
    return a % b

@tool
def absolute_value(a: float) -> float:
    """Calculate the absolute value of a number."""
    return abs(a)

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for comprehensive information on a topic."""
    try:
        search_docs = WikipediaLoader(query=query, load_max_docs=3).load()
        if not search_docs:
            return f"No Wikipedia results found for: {query}"
        
        # Return the most relevant result with more content
        result = search_docs[0]
        title = result.metadata.get('title', 'Unknown')
        content = result.page_content[:1500]
        
        return f"Wikipedia article '{title}':\n{content}..."
    except Exception as e:
        return f"Wikipedia search failed: {str(e)}"

@tool
def web_search(query: str) -> str:
    """Search the web for current, factual information."""
    try:
        search_tool = TavilySearchResults(max_results=4)
        results = search_tool.invoke(query)
        
        if not results:
            return f"No web results found for: {query}"
        
        formatted_results = f"Web search results for '{query}':\n\n"
        for i, result in enumerate(results, 1):
            url = result.get('url', 'Unknown URL')
            content = result.get('content', 'No content')[:800]
            formatted_results += f"{i}. Source: {url}\n{content}...\n\n"
        
        return formatted_results
    except Exception as e:
        return f"Web search failed: {str(e)}"

@tool
def arxiv_search(query: str) -> str:
    """Search arXiv for academic papers and research."""
    try:
        search_docs = ArxivLoader(query=query, load_max_docs=3).load()
        if not search_docs:
            return f"No arXiv papers found for: {query}"
        
        formatted_results = f"arXiv search results for '{query}':\n\n"
        for i, doc in enumerate(search_docs, 1):
            title = doc.metadata.get('Title', 'Unknown Title')
            authors = doc.metadata.get('Authors', 'Unknown Authors')
            content = doc.page_content[:1000]
            formatted_results += f"{i}. Title: {title}\nAuthors: {authors}\nAbstract: {content}...\n\n"
        
        return formatted_results
    except Exception as e:
        return f"arXiv search failed: {str(e)}"

# All tools
tools = [
    multiply, add, subtract, divide, power, square_root, modulo, absolute_value,
    wiki_search, web_search, arxiv_search
]

# ================================
# ENHANCED GAIA AGENT
# ================================

class EnhancedGAIAAgent:
    """Enhanced GAIA agent optimized for benchmark performance"""
    
    def __init__(self, provider="groq", model="llama3-70b-8192"):
        self.provider = provider
        self.model = model
        self.graph = self._build_graph()
        
    def _build_graph(self):
        """Build optimized agent graph"""
        print(f"Building enhanced agent: {self.provider} {self.model}")
        
        if self.provider == "groq":
            llm = ChatGroq(
                model=self.model, 
                temperature=0,
                max_retries=3,
                timeout=120
            )
        elif self.provider == "google":
            llm = ChatGoogleGenerativeAI(
                model="gemini-pro", 
                temperature=0,
                max_retries=3
            )
        else:
            raise ValueError("Choose 'groq' or 'google'")
        
        llm_with_tools = llm.bind_tools(tools)
        
        def assistant_node(state: MessagesState):
            """Enhanced assistant node with better error handling"""
            try:
                messages = state["messages"]
                
                # Add system message if not present
                if not any(isinstance(msg, SystemMessage) for msg in messages):
                    messages = [SystemMessage(content=SYSTEM_PROMPT)] + messages
                
                # Invoke LLM
                response = llm_with_tools.invoke(messages)
                return {"messages": [response]}
                
            except Exception as e:
                error_msg = f"Assistant error: {str(e)}"
                print(f" {error_msg}")
                return {"messages": [HumanMessage(content=f"Error: {error_msg}")]}
        
        # Build graph
        builder = StateGraph(MessagesState)
        builder.add_node("assistant", assistant_node)
        builder.add_node("tools", ToolNode(tools))
        
        builder.add_edge(START, "assistant")
        builder.add_conditional_edges("assistant", tools_condition)
        builder.add_edge("tools", "assistant")
        
        return builder.compile()
    
    def process_question(self, question: str, question_id: str = None) -> Dict:
        """Process a single GAIA question with enhanced handling"""
        start_time = time.time()
        
        try:
            # Create message and invoke graph
            messages = [HumanMessage(content=question)]
            result = self.graph.invoke({"messages": messages})
            
            # Extract final response
            final_response = result["messages"][-1].content
            
            # Extract final answer more robustly
            answer = self._extract_final_answer(final_response)
            
            processing_time = time.time() - start_time
            
            return {
                'question_id': question_id,
                'question': question,
                'full_response': final_response,
                'final_answer': answer,
                'processing_time': processing_time,
                'status': 'success',
                'error': None
            }
            
        except Exception as e:
            processing_time = time.time() - start_time
            error_msg = str(e)
            
            return {
                'question_id': question_id,
                'question': question,
                'full_response': f"Error: {error_msg}",
                'final_answer': f"ERROR: {error_msg}",
                'processing_time': processing_time,
                'status': 'error',
                'error': error_msg
            }
    
    def _extract_final_answer(self, response: str) -> str:
        """Extract final answer more robustly"""
        if "FINAL ANSWER:" in response:
            answer = response.split("FINAL ANSWER:")[-1].strip()
            # Clean up the answer
            answer = answer.split('\n')[0].strip()  # Take first line only
            return answer
        else:
            # Fallback: take last substantial line
            lines = [line.strip() for line in response.split('\n') if line.strip()]
            return lines[-1] if lines else response.strip()
    
    def evaluate_300_questions(self, questions_df: pd.DataFrame) -> pd.DataFrame:
        """Evaluate 300 GAIA questions with comprehensive tracking"""
        print(f"Starting GAIA evaluation: {len(questions_df)} questions")
        print(f" Estimated time: {len(questions_df) * 15 / 60:.0f}-{len(questions_df) * 25 / 60:.0f} minutes")
        
        results = []
        
        # Progress tracking
        with tqdm(total=len(questions_df), desc="GAIA Evaluation Progress") as pbar:
            for idx, row in questions_df.iterrows():
                question_id = row.get('task_id', f'gaia_{idx}')
                question = row['question']
                level = row['level']
                expected = row.get('final_answer', '')
                
                print(f"\n Question {idx+1}/{len(questions_df)} - Level {level}")
                print(f"ID: {question_id}")
                print(f"Q: {question[:120]}...")
                
                # Process question
                result = self.process_question(question, question_id)
                
                # Add metadata
                result.update({
                    'level': level,
                    'expected_answer': expected,
                    'question_index': idx
                })
                
                results.append(result)
                
                # Show result
                status_emoji = "" if result['status'] == 'success' else ""
                print(f"A: {result['final_answer'][:120]}...")
                print(f"{status_emoji} Time: {result['processing_time']:.2f}s")
                
                # Update progress bar
                pbar.update(1)
                pbar.set_postfix({
                    'Success Rate': f"{len([r for r in results if r['status'] == 'success'])/len(results):.1%}",
                    'Avg Time': f"{np.mean([r['processing_time'] for r in results]):.1f}s"
                })
                
                # Save progress every 25 questions
                if (idx + 1) % 25 == 0:
                    temp_df = pd.DataFrame(results)
                    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
                    temp_df.to_csv(f'gaia_progress_{timestamp}.csv', index=False)
                    print(f"💾 Progress saved at question {idx+1}")
                
                # Rate limiting
                time.sleep(1.5)
        
        results_df = pd.DataFrame(results)
        print(f"\n GAIA evaluation completed!")
        return results_df

# ================================
# ANALYSIS FUNCTIONS
# ================================

def analyze_gaia_results(results_df: pd.DataFrame) -> Dict:
    """Comprehensive analysis of GAIA results"""
    
    if results_df.empty:
        return {}
    
    # Basic metrics
    total = len(results_df)
    successful = len(results_df[results_df['status'] == 'success'])
    success_rate = successful / total
    error_rate = 1 - success_rate
    
    metrics = {
        'total_questions': total,
        'successful_runs': successful,
        'success_rate': success_rate,
        'error_rate': error_rate,
        'avg_processing_time': results_df['processing_time'].mean(),
        'median_processing_time': results_df['processing_time'].median(),
        'total_processing_time': results_df['processing_time'].sum()
    }
    
    # Level-wise analysis
    level_metrics = {}
    for level in sorted(results_df['level'].unique()):
        level_data = results_df[results_df['level'] == level]
        level_success = len(level_data[level_data['status'] == 'success'])
        
        level_metrics[f'level_{level}'] = {
            'count': len(level_data),
            'success_count': level_success,
            'success_rate': level_success / len(level_data),
            'error_rate': 1 - (level_success / len(level_data)),
            'avg_time': level_data['processing_time'].mean()
        }
    
    metrics['by_level'] = level_metrics
    
    # Print comprehensive analysis
    print(f"\n GAIA Benchmark Results Analysis")
    print(f"=" * 60)
    print(f" Total Questions: {total}")
    print(f" Successful: {successful}")
    print(f" Overall Success Rate: {success_rate:.2%}")
    print(f" Error Rate: {error_rate:.2%}")
    print(f" Average Time: {metrics['avg_processing_time']:.2f}s")
    print(f" Total Time: {metrics['total_processing_time']/60:.1f} minutes")
    
    print(f"\n Performance by Difficulty Level:")
    for level_key, level_data in level_metrics.items():
        level_num = level_key.split('_')[1]
        print(f"Level {level_num}:")
        print(f"   Questions: {level_data['count']}")
        print(f"   Success: {level_data['success_count']}/{level_data['count']} ({level_data['success_rate']:.1%})")
        print(f"   Avg Time: {level_data['avg_time']:.1f}s")
    
    return metrics

def save_gaia_results(results_df: pd.DataFrame, metrics: Dict):
    """Save comprehensive GAIA results"""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    
    # Save detailed results
    results_filename = f'gaia_300_final_results_{timestamp}.csv'
    results_df.to_csv(results_filename, index=False)
    print(f" Detailed results: {results_filename}")
    
    # Save metrics
    metrics_filename = f'gaia_300_metrics_{timestamp}.json'
    with open(metrics_filename, 'w') as f:
        json.dump(metrics, f, indent=2, default=str)
    print(f" Metrics: {metrics_filename}")
    
    # Create summary report
    report = f"""
# GAIA Benchmark - 300 Questions Evaluation Report
Generated: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}

## Overall Performance
- Total Questions: {metrics['total_questions']}
- Success Rate: {metrics['success_rate']:.2%}
- Average Time: {metrics['avg_processing_time']:.2f}s
- Total Time: {metrics['total_processing_time']/60:.1f} minutes

## Level Performance
"""
    
    for level_key, level_data in metrics['by_level'].items():
        level_num = level_key.split('_')[1]
        report += f"""
### Level {level_num}
- Questions: {level_data['count']}
- Success Rate: {level_data['success_rate']:.2%}
- Average Time: {level_data['avg_time']:.2f}s
"""
    
    report_filename = f'gaia_300_report_{timestamp}.txt'
    with open(report_filename, 'w') as f:
        f.write(report)
    print(f"💾 Report: {report_filename}")
    
    return timestamp

# ================================
# MAIN EXECUTION
# ================================

def main_gaia_300():
    """Main function for 300 GAIA questions evaluation"""
    print(" GAIA Benchmark - 300 Questions Evaluation")
    print("=" * 60)
    
    try:
        # Step 1: Load GAIA dataset
        print("\n Step 1: Loading GAIA Dataset")
        loader = FinalGAIALoader()
        
        if not loader.load_gaia_dataset():
            print(" Failed to load GAIA dataset")
            return None, None
        
        # Step 2: Filter 300 questions
        print(f"\n Step 2: Filtering 300 Questions")
        filtered_questions = loader.filter_300_questions()
        
        if len(filtered_questions) < 250:  # Allow some flexibility
            print(f" Only {len(filtered_questions)} questions available")
            proceed = input("Proceed with available questions? (y/n): ")
            if proceed.lower() != 'y':
                return None, None
        
        # Create DataFrame
        questions_df = loader.create_dataframe(filtered_questions)
        
        # Step 3: Confirm evaluation
        print(f"\n Step 3: Ready for Evaluation")
        print(f" Questions to evaluate: {len(questions_df)}")
        
        level_dist = questions_df['level'].value_counts().sort_index()
        for level, count in level_dist.items():
            percentage = (count / len(questions_df)) * 100
            print(f"  Level {level}: {count} questions ({percentage:.1f}%)")
        
        estimated_time = len(questions_df) * 18 / 60  # 18 seconds average per question
        print(f" Estimated time: {estimated_time:.0f} minutes")
        
        # Confirm with user
        proceed = input(f"\nProceed with {len(questions_df)} questions evaluation? (y/n): ")
        if proceed.lower() != 'y':
            print("Evaluation cancelled.")
            return None, None
        
        # Step 4: Initialize enhanced agent
        print(f"\n Step 4: Initializing Enhanced GAIA Agent")
        agent = EnhancedGAIAAgent(provider="groq", model="llama3-70b-8192")
        
        # Step 5: Run evaluation
        print(f"\n Step 5: Running GAIA Evaluation")
        results_df = agent.evaluate_300_questions(questions_df)
        
        # Step 6: Analyze results
        print(f"\n Step 6: Analyzing Results")
        metrics = analyze_gaia_results(results_df)
        
        # Step 7: Save results
        print(f"\n Step 7: Saving Results")
        timestamp = save_gaia_results(results_df, metrics)
        
        # Final summary
        print(f"\n GAIA Evaluation Completed Successfully!")
        print(f" Success Rate: {metrics['success_rate']:.2%}")
        print(f" Total Time: {metrics['total_processing_time']/60:.1f} minutes")
        print(f" Files saved with timestamp: {timestamp}")
        
        # Performance insights
        best_level = max(metrics['by_level'].items(), key=lambda x: x[1]['success_rate'])
        worst_level = min(metrics['by_level'].items(), key=lambda x: x[1]['success_rate'])
        
        print(f"\n Key Insights:")
        print(f" Best Performance: Level {best_level[0].split('_')[1]} ({best_level[1]['success_rate']:.1%})")
        print(f" Most Challenge: Level {worst_level[0].split('_')[1]} ({worst_level[1]['success_rate']:.1%})")
        
        if metrics['success_rate'] >= 0.85:
            print(" Excellent performance on GAIA benchmark!")
        elif metrics['success_rate'] >= 0.70:
            print(" Good performance on GAIA benchmark!")
        else:
            print(" Room for improvement on GAIA benchmark.")
        
        return results_df, metrics
        
    except Exception as e:
        print(f" Error in main execution: {e}")
        import traceback
        traceback.print_exc()
        return None, None

def test_gaia_single():
    """Test with a single GAIA question"""
    print(" Testing Single GAIA Question")
    print("=" * 40)
    
    try:
        # Load dataset
        loader = FinalGAIALoader()
        if not loader.load_gaia_dataset():
            print(" Failed to load dataset")
            return None
        
        # Get one question of each level
        sample_questions = []
        for level in [1, 2, 3]:
            level_questions = [q for q in loader.test_data if q.get('Level') == level]
            if level_questions:
                sample_questions.append(level_questions[0])
        
        if not sample_questions:
            print(" No sample questions found")
            return None
        
        # Test with agent
        agent = EnhancedGAIAAgent()
        
        for i, question_data in enumerate(sample_questions):
            question = question_data['Question']
            level = question_data['Level']
            
            print(f"\n Test {i+1} - Level {level}")
            print(f"Q: {question[:150]}...")
            
            result = agent.process_question(question, f"test_{level}")
            
            print(f"A: {result['final_answer']}")
            print(f" Time: {result['processing_time']:.2f}s")
            print(f"Status: {result['status']}")
        
        return True
        
    except Exception as e:
        print(f" Test failed: {e}")
        return None

def quick_gaia_test():
    """Quick test with 10 questions"""
    print(" Quick GAIA Test - 10 Questions")
    print("=" * 40)
    
    try:
        # Load and filter
        loader = FinalGAIALoader()
        if not loader.load_gaia_dataset():
            return None, None
        
        # Get 10 questions (3/4/3 distribution)
        level_groups = {1: [], 2: [], 3: []}
        for item in loader.test_data:
            level = item.get('Level')
            if level in level_groups:
                level_groups[level].append(item)
        
        quick_questions = []
        quick_questions.extend(level_groups[1][:3])  # 3 Level 1
        quick_questions.extend(level_groups[2][:4])  # 4 Level 2  
        quick_questions.extend(level_groups[3][:3])  # 3 Level 3
        
        questions_df = loader.create_dataframe(quick_questions)
        
        # Run evaluation
        agent = EnhancedGAIAAgent()
        results_df = agent.evaluate_300_questions(questions_df)
        
        # Quick analysis
        metrics = analyze_gaia_results(results_df)
        
        return results_df, metrics
        
    except Exception as e:
        print(f" Quick test failed: {e}")
        return None, None

# ================================
# EXECUTION
# ================================

if __name__ == "__main__":
    print(" GAIA Benchmark Evaluation System")
    print("Using correct dataset configuration: 2023_all")
    print("=" * 60)
    
    # Test API connectivity
    print("\n Testing API Connectivity...")
    try:
        # Test Groq
        test_llm = ChatGroq(model="llama3-8b-8192", temperature=0)
        test_response = test_llm.invoke([HumanMessage(content="Hello")])
        print(" Groq API working")
        
        # Test Tavily
        test_search = TavilySearchResults(max_results=1)
        test_results = test_search.invoke("test")
        print(" Tavily API working")
        
    except Exception as e:
        print(f" API test warning: {e}")
    
    # Main menu
    print(f"\n🎮 Choose evaluation option:")
    print("1. Test single GAIA questions (5 minutes)")
    print("2. Quick test with 10 questions (15 minutes)")
    print("3. Full 300 questions evaluation (75-90 minutes)")
    print("4. Auto-run full evaluation")
    
    choice = input("\nEnter choice (1-4): ").strip()
    
    if choice == "1":
        print(" Running single question tests...")
        test_gaia_single()
        
    elif choice == "2":
        print(" Running quick 10-question test...")
        results_df, metrics = quick_gaia_test()
        if results_df is not None:
            print(f"\n Quick Test Results:")
            print(f" Success Rate: {metrics['success_rate']:.2%}")
            print(f"⏱️ Average Time: {metrics['avg_processing_time']:.1f}s")
        
    elif choice == "3" or choice == "4":
        print(" Starting full GAIA 300 questions evaluation...")
        results_df, metrics = main_gaia_300()
        
        if results_df is not None:
            print(f"\n Final GAIA Benchmark Results:")
            print(f" Overall Success Rate: {metrics['success_rate']:.2%}")
            print(f" Questions Completed: {len(results_df)}")
            print(f"⏱️ Total Evaluation Time: {metrics['total_processing_time']/60:.1f} minutes")
            
            # Level breakdown
            for level_key, level_data in metrics['by_level'].items():
                level_num = level_key.split('_')[1]
                print(f" Level {level_num}: {level_data['success_rate']:.1%} success rate")
                
        else:
            print(" Evaluation failed")
            
    else:
        print("Invalid choice. Running single question test...")
        test_gaia_single()

print("\n🏁 GAIA Evaluation System Complete!")