Spaces:
Running
Running
File size: 34,909 Bytes
558e09f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 |
# GAIA Dataset - Final Working Implementation for 300 Questions
# Based on actual GAIA dataset structure: 2023_all config with test split
import os
import json
import pandas as pd
import numpy as np
import time
from typing import Dict, List, Tuple
import requests
from datetime import datetime
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import warnings
warnings.filterwarnings('ignore')
# Install required packages
print("📦 Installing required packages...")
import subprocess
import sys
packages = [
"langchain-community", "langchain-core", "langchain-google-genai",
"langchain-groq", "langchain-huggingface", "langgraph", "supabase",
"sentence-transformers", "tavily-python", "wikipedia", "arxiv",
"python-dotenv", "gradio", "datasets", "huggingface_hub"
]
for package in packages:
subprocess.check_call([sys.executable, "-m", "pip", "install", "-q", package])
print("✅ All packages installed!")
# Import libraries
from dotenv import load_dotenv
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from supabase.client import Client, create_client
from datasets import load_dataset
from huggingface_hub import login, hf_hub_download
# ================================
# API KEYS SETUP
# ================================
print("🔑 Setting up API keys...")
API_KEYS = {
'GROQ_API_KEY': "",
'TAVILY_API_KEY': "",
'SUPABASE_URL': '',
'SUPABASE_SERVICE_KEY': '',
'GOOGLE_API_KEY': '',
'HUGGINGFACEHUB_API_TOKEN': 'h'
}
for key, value in API_KEYS.items():
os.environ[key] = value
print(" API keys configured!")
# HuggingFace login
try:
login(token=API_KEYS['HUGGINGFACEHUB_API_TOKEN'])
print("HuggingFace authentication successful!")
except Exception as e:
print(f"HuggingFace login warning: {e}")
# ================================
# FINAL GAIA DATASET LOADER
# ================================
class FinalGAIALoader:
"""Final GAIA dataset loader using correct configuration"""
def __init__(self):
self.dataset = None
self.test_data = []
def load_gaia_dataset(self):
"""Load GAIA dataset using the correct configuration"""
print("Loading GAIA dataset with correct configuration...")
try:
# Based on the dataset code, use "2023_all" config
print("Loading with config '2023_all'...")
self.dataset = load_dataset(
"gaia-benchmark/GAIA",
"2023_all",
token=True,
trust_remote_code=True # Important for custom dataset scripts
)
print(f"Dataset loaded successfully!")
print(f"Available splits: {list(self.dataset.keys())}")
if 'test' in self.dataset:
self.test_data = list(self.dataset['test'])
print(f"Loaded {len(self.test_data)} test questions")
# Analyze the data structure
self._analyze_data_structure()
return True
else:
print("No test split found")
return False
except Exception as e:
print(f"Primary method failed: {e}")
# Fallback: Try without trust_remote_code
try:
print("Trying fallback method...")
self.dataset = load_dataset(
"gaia-benchmark/GAIA",
"2023_all",
token=True
)
if 'test' in self.dataset:
self.test_data = list(self.dataset['test'])
print(f"Fallback successful! Loaded {len(self.test_data)} questions")
self._analyze_data_structure()
return True
except Exception as e2:
print(f"Fallback also failed: {e2}")
# Final fallback: Manual download
return self._manual_download_fallback()
def _manual_download_fallback(self):
"""Manual download fallback method"""
print("Attempting manual download...")
try:
# Download the metadata file directly
metadata_file = hf_hub_download(
repo_id="gaia-benchmark/GAIA",
filename="2023/test/metadata.jsonl",
repo_type="dataset",
token=API_KEYS['HUGGINGFACEHUB_API_TOKEN']
)
# Read the JSONL file
test_questions = []
with open(metadata_file, 'r', encoding='utf-8') as f:
for line in f:
if line.strip():
test_questions.append(json.loads(line))
self.test_data = test_questions
print(f"Manual download successful! Loaded {len(test_questions)} questions")
self._analyze_data_structure()
return True
except Exception as e:
print(f"Manual download failed: {e}")
return False
def _analyze_data_structure(self):
"""Analyze the structure of loaded GAIA data"""
if not self.test_data:
return
print(f"\n GAIA Data Analysis:")
print(f"Total questions: {len(self.test_data)}")
# Show sample item structure
if self.test_data:
sample = self.test_data[0]
print(f"Sample item keys: {list(sample.keys())}")
# Level distribution
levels = [item.get('Level') for item in self.test_data]
level_counts = pd.Series(levels).value_counts().sort_index()
print(f"\nLevel distribution:")
for level, count in level_counts.items():
print(f" Level {level}: {count} questions")
# Sample questions
print(f"\nSample questions by level:")
for level in sorted(level_counts.index):
level_questions = [item for item in self.test_data if item.get('Level') == level]
if level_questions:
sample_q = level_questions[0]['Question'][:100]
print(f" Level {level}: {sample_q}...")
def filter_300_questions(self, level1_ratio=0.6, level2_ratio=0.25, level3_ratio=0.15):
"""Filter exactly 300 questions with specified ratios"""
if not self.test_data:
print("No test data available")
return []
total_questions = 300
level1_count = int(total_questions * level1_ratio) # 180
level2_count = int(total_questions * level2_ratio) # 75
level3_count = total_questions - level1_count - level2_count # 45
print(f"Filtering {total_questions} questions:")
print(f" Level 1: {level1_count} questions ({level1_ratio*100:.0f}%)")
print(f" Level 2: {level2_count} questions ({level2_ratio*100:.0f}%)")
print(f" Level 3: {level3_count} questions ({level3_ratio*100:.0f}%)")
# Group by level
level_groups = {1: [], 2: [], 3: []}
for item in self.test_data:
level = item.get('Level')
if level in level_groups:
level_groups[level].append(item)
# Check availability
print(f"\nAvailable questions by level:")
for level in [1, 2, 3]:
available = len(level_groups[level])
print(f" Level {level}: {available} available")
# Sample questions
filtered_questions = []
np.random.seed(42) # For reproducibility
for level, target_count in [(1, level1_count), (2, level2_count), (3, level3_count)]:
available = len(level_groups[level])
if available >= target_count:
# Random sample
sampled_indices = np.random.choice(available, size=target_count, replace=False)
sampled = [level_groups[level][i] for i in sampled_indices]
filtered_questions.extend(sampled)
print(f"Level {level}: Selected {target_count} from {available}")
else:
# Take all available
filtered_questions.extend(level_groups[level])
print(f"Level {level}: Only {available} available (needed {target_count})")
print(f"\n📊 Total filtered: {len(filtered_questions)} questions")
# Verify final distribution
final_levels = [q['Level'] for q in filtered_questions]
final_dist = pd.Series(final_levels).value_counts().sort_index()
print(f"Final distribution:")
for level, count in final_dist.items():
percentage = (count / len(filtered_questions)) * 100
print(f" Level {level}: {count} questions ({percentage:.1f}%)")
return filtered_questions
def create_dataframe(self, questions):
"""Create DataFrame from filtered questions"""
if not questions:
return pd.DataFrame()
data = []
for i, item in enumerate(questions):
data.append({
'id': i,
'task_id': item.get('task_id', f'gaia_{i}'),
'question': item.get('Question', ''),
'level': item.get('Level', 1),
'final_answer': item.get('Final answer', ''),
'file_name': item.get('file_name', ''),
'annotator_metadata': item.get('Annotator Metadata', {})
})
df = pd.DataFrame(data)
print(f"📋 Created DataFrame with {len(df)} questions")
return df
# ================================
# ENHANCED SYSTEM PROMPT
# ================================
SYSTEM_PROMPT = """
You are an expert research assistant designed to answer complex, multi-step questions from the GAIA benchmark.
You have access to powerful tools for web search, Wikipedia, arXiv research, and mathematical calculations.
Key Instructions:
1. Read the question carefully and identify what information you need
2. Use tools strategically - web search for current info, Wikipedia for general knowledge, arXiv for research
3. For mathematical questions, use the calculation tools
4. Think step-by-step and show your reasoning
5. Be precise and accurate in your final answer
Answer Format:
- Provide clear reasoning and methodology
- Show any calculations or research steps
- End with: FINAL ANSWER: [exact answer]
- Keep the final answer concise and precise
- Match the format requested (number, name, list, etc.)
Examples:
Question: What is the population of Tokyo according to the latest census?
I need to search for the most recent population data for Tokyo.
[uses web_search("Tokyo population latest census")]
Based on the search results, the latest census shows...
FINAL ANSWER: 13960000
Question: What is 157 * 238?
I need to calculate 157 multiplied by 238.
[uses multiply(157, 238)]
FINAL ANSWER: 37366
"""
# ================================
# ENHANCED TOOLS
# ================================
@tool
def multiply(a: float, b: float) -> float:
"""Multiply two numbers."""
return a * b
@tool
def add(a: float, b: float) -> float:
"""Add two numbers."""
return a + b
@tool
def subtract(a: float, b: float) -> float:
"""Subtract two numbers."""
return a - b
@tool
def divide(a: float, b: float) -> float:
"""Divide two numbers."""
if abs(b) < 1e-10:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def power(a: float, b: float) -> float:
"""Calculate a raised to the power of b."""
return a ** b
@tool
def square_root(a: float) -> float:
"""Calculate the square root of a number."""
if a < 0:
raise ValueError("Cannot calculate square root of negative number.")
return a ** 0.5
@tool
def modulo(a: float, b: float) -> float:
"""Calculate a modulo b (remainder after division)."""
return a % b
@tool
def absolute_value(a: float) -> float:
"""Calculate the absolute value of a number."""
return abs(a)
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for comprehensive information on a topic."""
try:
search_docs = WikipediaLoader(query=query, load_max_docs=3).load()
if not search_docs:
return f"No Wikipedia results found for: {query}"
# Return the most relevant result with more content
result = search_docs[0]
title = result.metadata.get('title', 'Unknown')
content = result.page_content[:1500]
return f"Wikipedia article '{title}':\n{content}..."
except Exception as e:
return f"Wikipedia search failed: {str(e)}"
@tool
def web_search(query: str) -> str:
"""Search the web for current, factual information."""
try:
search_tool = TavilySearchResults(max_results=4)
results = search_tool.invoke(query)
if not results:
return f"No web results found for: {query}"
formatted_results = f"Web search results for '{query}':\n\n"
for i, result in enumerate(results, 1):
url = result.get('url', 'Unknown URL')
content = result.get('content', 'No content')[:800]
formatted_results += f"{i}. Source: {url}\n{content}...\n\n"
return formatted_results
except Exception as e:
return f"Web search failed: {str(e)}"
@tool
def arxiv_search(query: str) -> str:
"""Search arXiv for academic papers and research."""
try:
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
if not search_docs:
return f"No arXiv papers found for: {query}"
formatted_results = f"arXiv search results for '{query}':\n\n"
for i, doc in enumerate(search_docs, 1):
title = doc.metadata.get('Title', 'Unknown Title')
authors = doc.metadata.get('Authors', 'Unknown Authors')
content = doc.page_content[:1000]
formatted_results += f"{i}. Title: {title}\nAuthors: {authors}\nAbstract: {content}...\n\n"
return formatted_results
except Exception as e:
return f"arXiv search failed: {str(e)}"
# All tools
tools = [
multiply, add, subtract, divide, power, square_root, modulo, absolute_value,
wiki_search, web_search, arxiv_search
]
# ================================
# ENHANCED GAIA AGENT
# ================================
class EnhancedGAIAAgent:
"""Enhanced GAIA agent optimized for benchmark performance"""
def __init__(self, provider="groq", model="llama3-70b-8192"):
self.provider = provider
self.model = model
self.graph = self._build_graph()
def _build_graph(self):
"""Build optimized agent graph"""
print(f"Building enhanced agent: {self.provider} {self.model}")
if self.provider == "groq":
llm = ChatGroq(
model=self.model,
temperature=0,
max_retries=3,
timeout=120
)
elif self.provider == "google":
llm = ChatGoogleGenerativeAI(
model="gemini-pro",
temperature=0,
max_retries=3
)
else:
raise ValueError("Choose 'groq' or 'google'")
llm_with_tools = llm.bind_tools(tools)
def assistant_node(state: MessagesState):
"""Enhanced assistant node with better error handling"""
try:
messages = state["messages"]
# Add system message if not present
if not any(isinstance(msg, SystemMessage) for msg in messages):
messages = [SystemMessage(content=SYSTEM_PROMPT)] + messages
# Invoke LLM
response = llm_with_tools.invoke(messages)
return {"messages": [response]}
except Exception as e:
error_msg = f"Assistant error: {str(e)}"
print(f" {error_msg}")
return {"messages": [HumanMessage(content=f"Error: {error_msg}")]}
# Build graph
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant_node)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
def process_question(self, question: str, question_id: str = None) -> Dict:
"""Process a single GAIA question with enhanced handling"""
start_time = time.time()
try:
# Create message and invoke graph
messages = [HumanMessage(content=question)]
result = self.graph.invoke({"messages": messages})
# Extract final response
final_response = result["messages"][-1].content
# Extract final answer more robustly
answer = self._extract_final_answer(final_response)
processing_time = time.time() - start_time
return {
'question_id': question_id,
'question': question,
'full_response': final_response,
'final_answer': answer,
'processing_time': processing_time,
'status': 'success',
'error': None
}
except Exception as e:
processing_time = time.time() - start_time
error_msg = str(e)
return {
'question_id': question_id,
'question': question,
'full_response': f"Error: {error_msg}",
'final_answer': f"ERROR: {error_msg}",
'processing_time': processing_time,
'status': 'error',
'error': error_msg
}
def _extract_final_answer(self, response: str) -> str:
"""Extract final answer more robustly"""
if "FINAL ANSWER:" in response:
answer = response.split("FINAL ANSWER:")[-1].strip()
# Clean up the answer
answer = answer.split('\n')[0].strip() # Take first line only
return answer
else:
# Fallback: take last substantial line
lines = [line.strip() for line in response.split('\n') if line.strip()]
return lines[-1] if lines else response.strip()
def evaluate_300_questions(self, questions_df: pd.DataFrame) -> pd.DataFrame:
"""Evaluate 300 GAIA questions with comprehensive tracking"""
print(f"Starting GAIA evaluation: {len(questions_df)} questions")
print(f" Estimated time: {len(questions_df) * 15 / 60:.0f}-{len(questions_df) * 25 / 60:.0f} minutes")
results = []
# Progress tracking
with tqdm(total=len(questions_df), desc="GAIA Evaluation Progress") as pbar:
for idx, row in questions_df.iterrows():
question_id = row.get('task_id', f'gaia_{idx}')
question = row['question']
level = row['level']
expected = row.get('final_answer', '')
print(f"\n Question {idx+1}/{len(questions_df)} - Level {level}")
print(f"ID: {question_id}")
print(f"Q: {question[:120]}...")
# Process question
result = self.process_question(question, question_id)
# Add metadata
result.update({
'level': level,
'expected_answer': expected,
'question_index': idx
})
results.append(result)
# Show result
status_emoji = "" if result['status'] == 'success' else ""
print(f"A: {result['final_answer'][:120]}...")
print(f"{status_emoji} Time: {result['processing_time']:.2f}s")
# Update progress bar
pbar.update(1)
pbar.set_postfix({
'Success Rate': f"{len([r for r in results if r['status'] == 'success'])/len(results):.1%}",
'Avg Time': f"{np.mean([r['processing_time'] for r in results]):.1f}s"
})
# Save progress every 25 questions
if (idx + 1) % 25 == 0:
temp_df = pd.DataFrame(results)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
temp_df.to_csv(f'gaia_progress_{timestamp}.csv', index=False)
print(f"💾 Progress saved at question {idx+1}")
# Rate limiting
time.sleep(1.5)
results_df = pd.DataFrame(results)
print(f"\n GAIA evaluation completed!")
return results_df
# ================================
# ANALYSIS FUNCTIONS
# ================================
def analyze_gaia_results(results_df: pd.DataFrame) -> Dict:
"""Comprehensive analysis of GAIA results"""
if results_df.empty:
return {}
# Basic metrics
total = len(results_df)
successful = len(results_df[results_df['status'] == 'success'])
success_rate = successful / total
error_rate = 1 - success_rate
metrics = {
'total_questions': total,
'successful_runs': successful,
'success_rate': success_rate,
'error_rate': error_rate,
'avg_processing_time': results_df['processing_time'].mean(),
'median_processing_time': results_df['processing_time'].median(),
'total_processing_time': results_df['processing_time'].sum()
}
# Level-wise analysis
level_metrics = {}
for level in sorted(results_df['level'].unique()):
level_data = results_df[results_df['level'] == level]
level_success = len(level_data[level_data['status'] == 'success'])
level_metrics[f'level_{level}'] = {
'count': len(level_data),
'success_count': level_success,
'success_rate': level_success / len(level_data),
'error_rate': 1 - (level_success / len(level_data)),
'avg_time': level_data['processing_time'].mean()
}
metrics['by_level'] = level_metrics
# Print comprehensive analysis
print(f"\n GAIA Benchmark Results Analysis")
print(f"=" * 60)
print(f" Total Questions: {total}")
print(f" Successful: {successful}")
print(f" Overall Success Rate: {success_rate:.2%}")
print(f" Error Rate: {error_rate:.2%}")
print(f" Average Time: {metrics['avg_processing_time']:.2f}s")
print(f" Total Time: {metrics['total_processing_time']/60:.1f} minutes")
print(f"\n Performance by Difficulty Level:")
for level_key, level_data in level_metrics.items():
level_num = level_key.split('_')[1]
print(f"Level {level_num}:")
print(f" Questions: {level_data['count']}")
print(f" Success: {level_data['success_count']}/{level_data['count']} ({level_data['success_rate']:.1%})")
print(f" Avg Time: {level_data['avg_time']:.1f}s")
return metrics
def save_gaia_results(results_df: pd.DataFrame, metrics: Dict):
"""Save comprehensive GAIA results"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Save detailed results
results_filename = f'gaia_300_final_results_{timestamp}.csv'
results_df.to_csv(results_filename, index=False)
print(f" Detailed results: {results_filename}")
# Save metrics
metrics_filename = f'gaia_300_metrics_{timestamp}.json'
with open(metrics_filename, 'w') as f:
json.dump(metrics, f, indent=2, default=str)
print(f" Metrics: {metrics_filename}")
# Create summary report
report = f"""
# GAIA Benchmark - 300 Questions Evaluation Report
Generated: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
## Overall Performance
- Total Questions: {metrics['total_questions']}
- Success Rate: {metrics['success_rate']:.2%}
- Average Time: {metrics['avg_processing_time']:.2f}s
- Total Time: {metrics['total_processing_time']/60:.1f} minutes
## Level Performance
"""
for level_key, level_data in metrics['by_level'].items():
level_num = level_key.split('_')[1]
report += f"""
### Level {level_num}
- Questions: {level_data['count']}
- Success Rate: {level_data['success_rate']:.2%}
- Average Time: {level_data['avg_time']:.2f}s
"""
report_filename = f'gaia_300_report_{timestamp}.txt'
with open(report_filename, 'w') as f:
f.write(report)
print(f"💾 Report: {report_filename}")
return timestamp
# ================================
# MAIN EXECUTION
# ================================
def main_gaia_300():
"""Main function for 300 GAIA questions evaluation"""
print(" GAIA Benchmark - 300 Questions Evaluation")
print("=" * 60)
try:
# Step 1: Load GAIA dataset
print("\n Step 1: Loading GAIA Dataset")
loader = FinalGAIALoader()
if not loader.load_gaia_dataset():
print(" Failed to load GAIA dataset")
return None, None
# Step 2: Filter 300 questions
print(f"\n Step 2: Filtering 300 Questions")
filtered_questions = loader.filter_300_questions()
if len(filtered_questions) < 250: # Allow some flexibility
print(f" Only {len(filtered_questions)} questions available")
proceed = input("Proceed with available questions? (y/n): ")
if proceed.lower() != 'y':
return None, None
# Create DataFrame
questions_df = loader.create_dataframe(filtered_questions)
# Step 3: Confirm evaluation
print(f"\n Step 3: Ready for Evaluation")
print(f" Questions to evaluate: {len(questions_df)}")
level_dist = questions_df['level'].value_counts().sort_index()
for level, count in level_dist.items():
percentage = (count / len(questions_df)) * 100
print(f" Level {level}: {count} questions ({percentage:.1f}%)")
estimated_time = len(questions_df) * 18 / 60 # 18 seconds average per question
print(f" Estimated time: {estimated_time:.0f} minutes")
# Confirm with user
proceed = input(f"\nProceed with {len(questions_df)} questions evaluation? (y/n): ")
if proceed.lower() != 'y':
print("Evaluation cancelled.")
return None, None
# Step 4: Initialize enhanced agent
print(f"\n Step 4: Initializing Enhanced GAIA Agent")
agent = EnhancedGAIAAgent(provider="groq", model="llama3-70b-8192")
# Step 5: Run evaluation
print(f"\n Step 5: Running GAIA Evaluation")
results_df = agent.evaluate_300_questions(questions_df)
# Step 6: Analyze results
print(f"\n Step 6: Analyzing Results")
metrics = analyze_gaia_results(results_df)
# Step 7: Save results
print(f"\n Step 7: Saving Results")
timestamp = save_gaia_results(results_df, metrics)
# Final summary
print(f"\n GAIA Evaluation Completed Successfully!")
print(f" Success Rate: {metrics['success_rate']:.2%}")
print(f" Total Time: {metrics['total_processing_time']/60:.1f} minutes")
print(f" Files saved with timestamp: {timestamp}")
# Performance insights
best_level = max(metrics['by_level'].items(), key=lambda x: x[1]['success_rate'])
worst_level = min(metrics['by_level'].items(), key=lambda x: x[1]['success_rate'])
print(f"\n Key Insights:")
print(f" Best Performance: Level {best_level[0].split('_')[1]} ({best_level[1]['success_rate']:.1%})")
print(f" Most Challenge: Level {worst_level[0].split('_')[1]} ({worst_level[1]['success_rate']:.1%})")
if metrics['success_rate'] >= 0.85:
print(" Excellent performance on GAIA benchmark!")
elif metrics['success_rate'] >= 0.70:
print(" Good performance on GAIA benchmark!")
else:
print(" Room for improvement on GAIA benchmark.")
return results_df, metrics
except Exception as e:
print(f" Error in main execution: {e}")
import traceback
traceback.print_exc()
return None, None
def test_gaia_single():
"""Test with a single GAIA question"""
print(" Testing Single GAIA Question")
print("=" * 40)
try:
# Load dataset
loader = FinalGAIALoader()
if not loader.load_gaia_dataset():
print(" Failed to load dataset")
return None
# Get one question of each level
sample_questions = []
for level in [1, 2, 3]:
level_questions = [q for q in loader.test_data if q.get('Level') == level]
if level_questions:
sample_questions.append(level_questions[0])
if not sample_questions:
print(" No sample questions found")
return None
# Test with agent
agent = EnhancedGAIAAgent()
for i, question_data in enumerate(sample_questions):
question = question_data['Question']
level = question_data['Level']
print(f"\n Test {i+1} - Level {level}")
print(f"Q: {question[:150]}...")
result = agent.process_question(question, f"test_{level}")
print(f"A: {result['final_answer']}")
print(f" Time: {result['processing_time']:.2f}s")
print(f"Status: {result['status']}")
return True
except Exception as e:
print(f" Test failed: {e}")
return None
def quick_gaia_test():
"""Quick test with 10 questions"""
print(" Quick GAIA Test - 10 Questions")
print("=" * 40)
try:
# Load and filter
loader = FinalGAIALoader()
if not loader.load_gaia_dataset():
return None, None
# Get 10 questions (3/4/3 distribution)
level_groups = {1: [], 2: [], 3: []}
for item in loader.test_data:
level = item.get('Level')
if level in level_groups:
level_groups[level].append(item)
quick_questions = []
quick_questions.extend(level_groups[1][:3]) # 3 Level 1
quick_questions.extend(level_groups[2][:4]) # 4 Level 2
quick_questions.extend(level_groups[3][:3]) # 3 Level 3
questions_df = loader.create_dataframe(quick_questions)
# Run evaluation
agent = EnhancedGAIAAgent()
results_df = agent.evaluate_300_questions(questions_df)
# Quick analysis
metrics = analyze_gaia_results(results_df)
return results_df, metrics
except Exception as e:
print(f" Quick test failed: {e}")
return None, None
# ================================
# EXECUTION
# ================================
if __name__ == "__main__":
print(" GAIA Benchmark Evaluation System")
print("Using correct dataset configuration: 2023_all")
print("=" * 60)
# Test API connectivity
print("\n Testing API Connectivity...")
try:
# Test Groq
test_llm = ChatGroq(model="llama3-8b-8192", temperature=0)
test_response = test_llm.invoke([HumanMessage(content="Hello")])
print(" Groq API working")
# Test Tavily
test_search = TavilySearchResults(max_results=1)
test_results = test_search.invoke("test")
print(" Tavily API working")
except Exception as e:
print(f" API test warning: {e}")
# Main menu
print(f"\n🎮 Choose evaluation option:")
print("1. Test single GAIA questions (5 minutes)")
print("2. Quick test with 10 questions (15 minutes)")
print("3. Full 300 questions evaluation (75-90 minutes)")
print("4. Auto-run full evaluation")
choice = input("\nEnter choice (1-4): ").strip()
if choice == "1":
print(" Running single question tests...")
test_gaia_single()
elif choice == "2":
print(" Running quick 10-question test...")
results_df, metrics = quick_gaia_test()
if results_df is not None:
print(f"\n Quick Test Results:")
print(f" Success Rate: {metrics['success_rate']:.2%}")
print(f"⏱️ Average Time: {metrics['avg_processing_time']:.1f}s")
elif choice == "3" or choice == "4":
print(" Starting full GAIA 300 questions evaluation...")
results_df, metrics = main_gaia_300()
if results_df is not None:
print(f"\n Final GAIA Benchmark Results:")
print(f" Overall Success Rate: {metrics['success_rate']:.2%}")
print(f" Questions Completed: {len(results_df)}")
print(f"⏱️ Total Evaluation Time: {metrics['total_processing_time']/60:.1f} minutes")
# Level breakdown
for level_key, level_data in metrics['by_level'].items():
level_num = level_key.split('_')[1]
print(f" Level {level_num}: {level_data['success_rate']:.1%} success rate")
else:
print(" Evaluation failed")
else:
print("Invalid choice. Running single question test...")
test_gaia_single()
print("\n🏁 GAIA Evaluation System Complete!") |