#!/usr/bin/env python3 """ GAIA Benchmark AI Agent - With HF Token Input Interface ===================================================== Enhanced version with user token input for GAIA dataset access """ import gradio as gr import torch import json import os import logging import time import re from datetime import datetime from typing import Dict, List, Optional, Tuple, Any from dataclasses import dataclass import pandas as pd from pathlib import Path # Core ML libraries from transformers import ( AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline ) from datasets import load_dataset from huggingface_hub import HfApi, hf_hub_download, list_repo_files # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # ================================ # ENHANCED AUTHENTICATION SETUP # ================================ class HFTokenManager: """Manages HuggingFace token for GAIA dataset access""" def __init__(self): self.current_token = None self.token_status = "No token set" self.gaia_access_status = "Not tested" def set_token(self, token: str) -> Tuple[str, str]: """Set and validate HF token""" if not token or not token.strip(): self.current_token = None self.token_status = "❌ No token provided" self.gaia_access_status = "Not tested" return self.token_status, self.gaia_access_status token = token.strip() # Basic token format validation if not token.startswith('hf_'): self.current_token = None self.token_status = "❌ Invalid token format (should start with 'hf_')" self.gaia_access_status = "Not tested" return self.token_status, self.gaia_access_status try: # Test token validity api = HfApi(token=token) user_info = api.whoami() self.current_token = token self.token_status = f"✅ Valid token for user: {user_info['name']}" # Test GAIA dataset access try: dataset_info = api.dataset_info("gaia-benchmark/GAIA", token=token) available_splits = list(dataset_info.splits.keys()) if dataset_info.splits else [] self.gaia_access_status = f"✅ GAIA access confirmed (splits: {', '.join(available_splits)})" except Exception as e: if "401" in str(e) or "403" in str(e): self.gaia_access_status = "❌ GAIA access denied - request access at: https://huggingface.co/datasets/gaia-benchmark/GAIA" else: self.gaia_access_status = f"⚠️ GAIA access test failed: {str(e)}" return self.token_status, self.gaia_access_status except Exception as e: self.current_token = None if "401" in str(e): self.token_status = "❌ Invalid token - check your token is correct" else: self.token_status = f"❌ Token validation failed: {str(e)}" self.gaia_access_status = "Not tested" return self.token_status, self.gaia_access_status def get_token(self) -> Optional[str]: """Get current valid token""" return self.current_token def test_gaia_access(self) -> Tuple[bool, str]: """Test GAIA dataset access with current token""" if not self.current_token: return False, "No valid token set" try: # Try to load a small sample from validation set dataset = load_dataset( "gaia-benchmark/GAIA", split="validation", token=self.current_token, trust_remote_code=True ) if len(dataset) > 0: return True, f"✅ GAIA dataset accessible ({len(dataset)} validation questions)" else: return False, "Dataset appears empty" except Exception as e: return False, f"Access failed: {str(e)}" # Global token manager token_manager = HFTokenManager() # Legacy HF_TOKEN setup with fallback def setup_hf_authentication(): """Setup HuggingFace authentication with environment fallback""" env_token = os.environ.get('HF_TOKEN') if env_token: token_manager.set_token(env_token) logger.info("✅ Found HF_TOKEN in environment") return env_token # Try HuggingFace CLI token try: from huggingface_hub import HfFolder cli_token = HfFolder.get_token() if cli_token: token_manager.set_token(cli_token) logger.info("✅ Found token from HuggingFace CLI") return cli_token except: pass # Try manual token file token_path = os.path.expanduser("~/.cache/huggingface/token") if os.path.exists(token_path): try: with open(token_path, 'r') as f: file_token = f.read().strip() if file_token: token_manager.set_token(file_token) logger.info("✅ Found token in cache file") return file_token except: pass logger.warning("⚠️ No HuggingFace token found - use interface to set token") return None # Initialize with environment token if available INITIAL_TOKEN = setup_hf_authentication() # ================================ # CORE DATA STRUCTURES (unchanged) # ================================ @dataclass class GAIAQuestion: """Structure for GAIA benchmark questions""" task_id: str question: str level: int final_answer: Optional[str] = None file_name: Optional[str] = None annotator_metadata: Optional[Dict] = None @classmethod def from_dict(cls, data: dict): return cls(**{k: v for k, v in data.items() if k in cls.__annotations__}) @dataclass class GAIAResponse: """Structure for GAIA responses""" task_id: str model_answer: str reasoning_trace: str final_answer: str processing_time: float = 0.0 confidence_score: float = 0.0 # ================================ # GAIA PROMPT MANAGEMENT (unchanged) # ================================ class GAIAPromptManager: """Manages GAIA-specific prompting and formatting""" GAIA_SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER] YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.""" @staticmethod def create_gaia_prompt(question: str) -> str: """Create properly formatted GAIA prompt""" return f"{GAIAPromptManager.GAIA_SYSTEM_PROMPT}\n\nQuestion: {question}\n\nLet me think step by step:" @staticmethod def extract_final_answer(response: str) -> Tuple[str, str]: """Extract final answer and reasoning from model response""" final_answer_pattern = r"FINAL ANSWER:\s*(.+?)(?:\n|$)" match = re.search(final_answer_pattern, response, re.IGNORECASE | re.DOTALL) if match: final_answer = match.group(1).strip() reasoning_end = match.start() reasoning = response[:reasoning_end].strip() else: lines = response.strip().split('\n') final_answer = lines[-1].strip() if lines else "" reasoning = '\n'.join(lines[:-1]) if len(lines) > 1 else response return final_answer, reasoning # ================================ # MODEL MANAGER (unchanged) # ================================ class HFSpaceModelManager: """Hugging Face Spaces optimized model manager""" SPACE_MODELS = { "Fast & Light": { "name": "microsoft/DialoGPT-medium", "size": "~345MB", "speed": "Fast", "quality": "Good", "gpu_required": False }, "Balanced": { "name": "stabilityai/stablelm-zephyr-3b", "size": "~3GB", "speed": "Medium", "quality": "Better", "gpu_required": True }, "High Quality": { "name": "HuggingFaceH4/zephyr-7b-beta", "size": "~7GB", "speed": "Slower", "quality": "Best", "gpu_required": True }, "Instruction Following": { "name": "mistralai/Mistral-7B-Instruct-v0.1", "size": "~7GB", "speed": "Medium", "quality": "Excellent", "gpu_required": True } } def __init__(self, model_choice: str = "Fast & Light"): self.model_config = self.SPACE_MODELS[model_choice] self.model_name = self.model_config["name"] self.tokenizer = None self.model = None self.pipeline = None self.device = "cuda" if torch.cuda.is_available() else "cpu" def load_model(self, progress_callback=None) -> str: """Load model with progress updates""" try: if progress_callback: progress_callback(0.1, "Loading tokenizer...") self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token if progress_callback: progress_callback(0.3, "Configuring model...") quantization_config = None if self.device == "cuda" and "7b" in self.model_name.lower(): quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) if progress_callback: progress_callback(0.6, "Loading model weights...") self.model = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=quantization_config, device_map="auto" if self.device == "cuda" else None, torch_dtype=torch.float16 if self.device == "cuda" else torch.float32, trust_remote_code=True ) if progress_callback: progress_callback(0.9, "Creating pipeline...") self.pipeline = pipeline( "text-generation", model=self.model, tokenizer=self.tokenizer, max_new_tokens=384, temperature=0.7, do_sample=True, pad_token_id=self.tokenizer.eos_token_id, device=0 if self.device == "cuda" else -1 ) if progress_callback: progress_callback(1.0, "Model loaded successfully!") return f"✅ Model '{self.model_name}' loaded successfully on {self.device.upper()}" except Exception as e: error_msg = f"❌ Error loading model: {str(e)}" logger.error(error_msg) return error_msg def generate_response(self, prompt: str, max_tokens: int = 384) -> str: """Generate response with error handling""" if self.pipeline is None: return "❌ Model not loaded. Please load a model first." try: max_input_length = 1000 if len(prompt) > max_input_length: prompt = prompt[:max_input_length] + "..." outputs = self.pipeline( prompt, max_new_tokens=max_tokens, temperature=0.7, do_sample=True, return_full_text=False, pad_token_id=self.tokenizer.eos_token_id ) response = outputs[0]['generated_text'].strip() return response except Exception as e: return f"❌ Error generating response: {str(e)}" # ================================ # ENHANCED DATASET MANAGEMENT WITH TOKEN SUPPORT # ================================ class GAIADatasetManager: """Manages GAIA dataset loading with user token support""" @staticmethod def load_gaia_dataset(split: str = "validation", max_questions: int = None, use_token: bool = True) -> Tuple[List[GAIAQuestion], str]: """Load GAIA dataset with token support""" try: logger.info(f"Attempting to load GAIA dataset split: {split}") current_token = token_manager.get_token() if use_token else None if use_token and not current_token: logger.warning("No valid token found, falling back to sample questions") questions = GAIADatasetManager.get_sample_questions() return questions[:max_questions] if max_questions else questions, "⚠️ No authentication token - using sample questions" # Test access first if using token if use_token: has_access, access_msg = token_manager.test_gaia_access() if not has_access: logger.warning(f"GAIA access test failed: {access_msg}") questions = GAIADatasetManager.get_sample_questions() return questions[:max_questions] if max_questions else questions, f"⚠️ {access_msg} - using sample questions" # Load the actual dataset dataset = load_dataset( "gaia-benchmark/GAIA", split=split, token=current_token, trust_remote_code=True ) logger.info(f"Successfully loaded GAIA dataset: {len(dataset)} items") questions = [] items = dataset[:max_questions] if max_questions else dataset for i, item in enumerate(items): # Handle different possible field names in GAIA dataset task_id = (item.get('task_id') or item.get('Task ID') or item.get('id') or f'gaia_{split}_{i:03d}') question_text = (item.get('Question') or item.get('question') or item.get('input') or 'No question text available') level = (item.get('Level') or item.get('level') or item.get('difficulty') or 1) final_answer = (item.get('Final answer') or item.get('final_answer') or item.get('answer') or item.get('target') or None) file_name = (item.get('file_name') or item.get('File name') or item.get('files') or None) annotator_metadata = (item.get('Annotator Metadata') or item.get('annotator_metadata') or item.get('metadata') or None) question = GAIAQuestion( task_id=str(task_id), question=str(question_text), level=int(level), final_answer=str(final_answer) if final_answer else None, file_name=str(file_name) if file_name else None, annotator_metadata=annotator_metadata ) questions.append(question) status = f"✅ Loaded {len(questions)} questions from GAIA {split} split" logger.info(status) return questions, status except Exception as e: error_msg = f"❌ Error loading GAIA dataset: {str(e)}" logger.error(error_msg) # Fallback to sample questions logger.info("Falling back to sample questions") questions = GAIADatasetManager.get_sample_questions() return questions[:max_questions] if max_questions else questions, f"{error_msg} (Using sample questions instead)" @staticmethod def get_sample_questions() -> List[GAIAQuestion]: """Get sample questions for testing when GAIA dataset is not accessible""" sample_data = [ { "task_id": "sample_001", "question": "What is the capital of France?", "level": 1, "final_answer": "Paris" }, { "task_id": "sample_002", "question": "Calculate 144 divided by 12.", "level": 1, "final_answer": "12" }, { "task_id": "sample_003", "question": "What is the largest planet in our solar system?", "level": 1, "final_answer": "Jupiter" }, { "task_id": "sample_004", "question": "Convert 100 degrees Celsius to Fahrenheit.", "level": 2, "final_answer": "212" }, { "task_id": "sample_005", "question": "List the first three even numbers greater than zero.", "level": 1, "final_answer": "2, 4, 6" }, { "task_id": "sample_006", "question": "What year did the Berlin Wall fall?", "level": 1, "final_answer": "1989" }, { "task_id": "sample_007", "question": "What is the chemical symbol for water?", "level": 1, "final_answer": "H2O" }, { "task_id": "sample_008", "question": "How many continents are there?", "level": 1, "final_answer": "7" }, { "task_id": "sample_009", "question": "What is 25% of 200?", "level": 1, "final_answer": "50" }, { "task_id": "sample_010", "question": "In which year did World War II end?", "level": 1, "final_answer": "1945" }, { "task_id": "sample_011", "question": "What is the square root of 144?", "level": 2, "final_answer": "12" }, { "task_id": "sample_012", "question": "Name the three primary colors.", "level": 1, "final_answer": "red, blue, yellow" } ] return [GAIAQuestion.from_dict(data) for data in sample_data] # ================================ # MAIN GAIA AGENT (updated with token support) # ================================ class GAIASpaceAgent: """Main GAIA agent with token support""" def __init__(self): self.model_manager = None self.prompt_manager = GAIAPromptManager() self.current_model = None self.evaluation_results: List[GAIAResponse] = [] def initialize_model(self, model_choice: str, progress=gr.Progress()) -> str: """Initialize model with progress tracking""" try: progress(0, desc="Initializing model manager...") self.model_manager = HFSpaceModelManager(model_choice) self.current_model = model_choice def progress_callback(value, desc): progress(value, desc=desc) result = self.model_manager.load_model(progress_callback) self.evaluation_results = [] return result except Exception as e: return f"❌ Failed to initialize model: {str(e)}" def process_single_question(self, question_text: str, progress=gr.Progress()) -> Tuple[str, str, str, float]: """Process a single question with detailed output""" if self.model_manager is None or self.model_manager.pipeline is None: return "❌ No model loaded", "", "", 0.0 start_time = time.time() try: progress(0.2, desc="Creating GAIA prompt...") prompt = self.prompt_manager.create_gaia_prompt(question_text) progress(0.4, desc="Generating response...") raw_response = self.model_manager.generate_response(prompt) progress(0.8, desc="Extracting final answer...") final_answer, reasoning = self.prompt_manager.extract_final_answer(raw_response) processing_time = time.time() - start_time progress(1.0, desc="Complete!") return final_answer, raw_response, reasoning, processing_time except Exception as e: processing_time = time.time() - start_time error_msg = f"❌ Error processing question: {str(e)}" return error_msg, "", "", processing_time def batch_evaluate(self, questions: List[GAIAQuestion], progress=gr.Progress()) -> Tuple[str, str, str]: """Evaluate multiple questions with progress tracking""" if self.model_manager is None: return "❌ No model loaded", "", "" results = [] total_questions = len(questions) progress(0, desc=f"Starting evaluation of {total_questions} questions...") for i, question in enumerate(questions): try: progress((i + 1) / total_questions, desc=f"Processing question {i + 1}/{total_questions}: {question.task_id}") start_time = time.time() prompt = self.prompt_manager.create_gaia_prompt(question.question) raw_response = self.model_manager.generate_response(prompt) final_answer, reasoning = self.prompt_manager.extract_final_answer(raw_response) processing_time = time.time() - start_time response = GAIAResponse( task_id=question.task_id, model_answer=raw_response, reasoning_trace=reasoning, final_answer=final_answer, processing_time=processing_time ) results.append(response) self.evaluation_results.append(response) except Exception as e: logger.error(f"Error processing {question.task_id}: {e}") error_response = GAIAResponse( task_id=question.task_id, model_answer=f"Error: {str(e)}", reasoning_trace="Processing failed", final_answer="ERROR", processing_time=0.0 ) results.append(error_response) self.evaluation_results.append(error_response) summary = self._generate_summary(results) detailed_results = self._generate_detailed_results(results, questions) jsonl_content = self._generate_jsonl(results) return summary, detailed_results, jsonl_content def _generate_summary(self, results: List[GAIAResponse]) -> str: """Generate evaluation summary""" total = len(results) errors = sum(1 for r in results if r.final_answer == "ERROR") successful = total - errors avg_time = sum(r.processing_time for r in results) / total if total > 0 else 0 total_time = sum(r.processing_time for r in results) auth_status = "✅ GAIA Access" if token_manager.get_token() else "⚠️ Sample Data Only" summary = f""" # 📊 GAIA Evaluation Summary ## Overall Statistics - **Total Questions**: {total} - **Successful**: {successful} - **Errors**: {errors} - **Success Rate**: {(successful/total*100):.1f}% ## Performance Metrics - **Average Processing Time**: {avg_time:.2f}s - **Total Processing Time**: {total_time:.2f}s - **Questions per Minute**: {(total/(total_time/60)):.1f} ## Model Information - **Model**: {self.current_model} - **Device**: {self.model_manager.device.upper() if self.model_manager else 'Unknown'} - **Authentication**: {auth_status} """ return summary def _generate_detailed_results(self, results: List[GAIAResponse], questions: List[GAIAQuestion]) -> str: """Generate detailed results breakdown""" detailed = "# 📋 Detailed Results\n\n" for i, (result, question) in enumerate(zip(results, questions), 1): status = "✅" if result.final_answer != "ERROR" else "❌" detailed += f""" ## Question {i}: {question.task_id} {status} **Question**: {question.question} **Model Answer**: {result.final_answer} **Expected Answer**: {question.final_answer if question.final_answer else 'N/A'} **Processing Time**: {result.processing_time:.2f}s **Level**: {question.level} --- """ return detailed def _generate_jsonl(self, results: List[GAIAResponse]) -> str: """Generate JSONL format for download""" jsonl_lines = [] for result in results: line = { "task_id": result.task_id, "model_answer": result.model_answer, "reasoning_trace": result.reasoning_trace } jsonl_lines.append(json.dumps(line)) return '\n'.join(jsonl_lines) # ================================ # GLOBAL AGENT INSTANCE # ================================ gaia_agent = GAIASpaceAgent() # ================================ # ENHANCED GRADIO INTERFACE FUNCTIONS # ================================ def set_hf_token_interface(token: str): """Interface function for setting HF token""" token_status, gaia_status = token_manager.set_token(token) return token_status, gaia_status, update_auth_status() def update_auth_status(): """Update authentication status display""" if token_manager.get_token(): return f"""### 🔐 Authentication Status {token_manager.token_status} ### 📊 GAIA Dataset Access {token_manager.gaia_access_status} ### 💡 Usage - ✅ Can access GAIA validation/test sets - ✅ Can download official benchmark data - ✅ Results suitable for leaderboard submission""" else: return """### 🔐 Authentication Status ❌ No valid HF token set ### 📊 GAIA Dataset Access ❌ Cannot access GAIA dataset - using sample questions ### 💡 To Access GAIA Dataset: 1. **Get Access**: Visit https://huggingface.co/datasets/gaia-benchmark/GAIA 2. **Get Token**: Visit https://huggingface.co/settings/tokens 3. **Set Token**: Enter your token in the field above""" def load_model_interface(model_choice: str, progress=gr.Progress()): """Interface function for model loading""" return gaia_agent.initialize_model(model_choice, progress) def single_question_interface(question: str, progress=gr.Progress()): """Interface function for single question processing""" if not question.strip(): return "Please enter a question", "", "", "0.00s" final_answer, full_response, reasoning, proc_time = gaia_agent.process_single_question(question, progress) return ( final_answer, full_response, reasoning, f"{proc_time:.2f}s" ) def batch_evaluate_interface(dataset_choice: str, max_questions: int, progress=gr.Progress()): """Interface function for batch evaluation""" if gaia_agent.model_manager is None: return "❌ Please load a model first", "", "" progress(0.1, desc="Loading dataset...") if dataset_choice == "Sample Questions": questions = GAIADatasetManager.get_sample_questions() status_msg = f"✅ Loaded {len(questions)} sample questions" else: use_token = dataset_choice in ["GAIA Validation Set", "GAIA Test Set"] split = "test" if dataset_choice == "GAIA Test Set" else "validation" questions, status_msg = GAIADatasetManager.load_gaia_dataset(split, max_questions, use_token) if max_questions and len(questions) > max_questions: questions = questions[:max_questions] progress(0.2, desc=f"{status_msg}. Starting evaluation...") summary, detailed, jsonl = gaia_agent.batch_evaluate(questions, progress) return summary, detailed, jsonl def get_model_info(model_choice: str): """Get information about selected model""" if model_choice in HFSpaceModelManager.SPACE_MODELS: config = HFSpaceModelManager.SPACE_MODELS[model_choice] return f""" **Model**: {config['name']} **Size**: {config['size']} **Speed**: {config['speed']} **Quality**: {config['quality']} **GPU Required**: {'Yes' if config['gpu_required'] else 'No'} """ return "Model information not available" def preview_gaia_interface(): """Interface for previewing GAIA dataset with token support""" if not token_manager.get_token(): return """ ## ⚠️ GAIA Dataset Preview - Authentication Required To access the GAIA dataset, you need: 1. **Request Access**: https://huggingface.co/datasets/gaia-benchmark/GAIA 2. **Get Token**: https://huggingface.co/settings/tokens 3. **Set Token**: Enter your token in the Authentication tab above ### 📋 Sample Questions Available: We provide 12 sample questions for testing your setup without authentication. Use "Sample Questions" in the evaluation tabs to get started! """ try: # Test access and get basic info has_access, access_msg = token_manager.test_gaia_access() if not has_access: return f""" ## ❌ GAIA Dataset Access Failed **Error**: {access_msg} ### 🔧 Troubleshooting: 1. Check your HF_TOKEN is valid 2. Ensure you have access to GAIA dataset 3. Try refreshing your token ### 🔄 Alternative: Use "Sample Questions" for testing without authentication. """ # Try to get some preview data dataset = load_dataset( "gaia-benchmark/GAIA", split="validation", token=token_manager.get_token(), trust_remote_code=True ) # Analyze the dataset total_questions = len(dataset) # Get level distribution levels = {} sample_questions = [] for i, item in enumerate(dataset): level = item.get('Level', 1) levels[level] = levels.get(level, 0) + 1 # Collect a few sample questions if len(sample_questions) < 3: question_text = item.get('Question', 'No question') if len(question_text) > 100: question_text = question_text[:100] + "..." sample_questions.append(f"- **Level {level}**: {question_text}") level_dist = "\n".join([f"- **Level {k}**: {v} questions" for k, v in sorted(levels.items())]) sample_text = "\n".join(sample_questions) return f""" ## ✅ GAIA Dataset Preview - Access Confirmed ### 📊 Dataset Statistics: - **Total Questions**: {total_questions} - **Available Split**: validation (development set) ### 📈 Level Distribution: {level_dist} ### 📋 Sample Questions: {sample_text} ### 🎯 Ready for Evaluation! You can now use "GAIA Validation Set" or "GAIA Test Set" in the evaluation tabs to test your model on real GAIA questions. """ except Exception as e: return f""" ## ❌ Error Previewing GAIA Dataset **Error**: {str(e)} ### 🔄 Recommendations: 1. Use "Sample Questions" for immediate testing 2. Check your authentication setup 3. Try again in a few minutes ### 📞 Need Help? - GAIA Dataset: https://huggingface.co/datasets/gaia-benchmark/GAIA - HF Authentication: https://huggingface.co/docs/hub/security-tokens """ # ================================ # ENHANCED GRADIO APP CREATION WITH TOKEN INPUT # ================================ def create_gaia_app(): """Create the main Gradio application with token input""" with gr.Blocks( title="GAIA Benchmark AI Agent", theme=gr.themes.Soft(), css=""" .gradio-container { font-family: 'Arial', sans-serif; } .main-header { text-align: center; background: linear-gradient(45deg, #2196F3, #21CBF3); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 2.5em; font-weight: bold; margin-bottom: 20px; } .auth-section { background: #f8f9fa; padding: 15px; border-radius: 10px; border-left: 4px solid #2196F3; margin: 10px 0; } """ ) as app: # Header gr.HTML("""
🧠 GAIA Benchmark AI Agent

Evaluate AI models on the GAIA benchmark with step-by-step reasoning

""") with gr.Tabs(): # =============================== # TAB 1: AUTHENTICATION # =============================== with gr.Tab("🔐 Authentication"): gr.HTML('
') gr.Markdown("## HuggingFace Token Setup") gr.Markdown(""" **To access the GAIA dataset, you need:** 1. **Request access** to GAIA dataset 2. **Get your HuggingFace token** 3. **Enter token below** """) gr.HTML('
') with gr.Row(): with gr.Column(scale=2): gr.Markdown("### 🔑 Enter Your HuggingFace Token") hf_token_input = gr.Textbox( label="HuggingFace Token", placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", type="password", info="Get your token from https://huggingface.co/settings/tokens", value="" ) set_token_btn = gr.Button("🔓 Set Token & Test Access", variant="primary") with gr.Row(): token_status = gr.Textbox( label="Token Status", value="No token set", interactive=False, lines=1 ) gaia_access_status = gr.Textbox( label="GAIA Access Status", value="Not tested", interactive=False, lines=1 ) with gr.Column(scale=1): auth_status_display = gr.Markdown( value=update_auth_status(), label="Authentication Status" ) gr.Markdown(""" ### 📋 Step-by-Step Setup Guide #### 1. Request GAIA Dataset Access - Visit: https://huggingface.co/datasets/gaia-benchmark/GAIA - Click **"Request Access"** button - Fill out the form explaining your use case - Wait for approval (usually within 24 hours) #### 2. Get Your HuggingFace Token - Go to: https://huggingface.co/settings/tokens - Click **"New token"** - Choose **"Read"** permissions - Copy the token (starts with `hf_`) #### 3. Enter Token Above - Paste your token in the field above - Click **"Set Token & Test Access"** - Verify both token validity and GAIA access ### ⚠️ Token Security - Your token is only stored in memory during this session - Never share your token publicly - You can revoke tokens at any time from HuggingFace settings ### 🔄 Without Authentication - You can still use **12 sample questions** for testing - All features work except real GAIA dataset access - Perfect for getting familiar with the interface """) # Set token event set_token_btn.click( fn=set_hf_token_interface, inputs=[hf_token_input], outputs=[token_status, gaia_access_status, auth_status_display] ) # =============================== # TAB 2: MODEL SETUP # =============================== with gr.Tab("🔧 Model Setup"): gr.Markdown("## Choose and Load Your Model") with gr.Row(): with gr.Column(scale=2): model_dropdown = gr.Dropdown( choices=list(HFSpaceModelManager.SPACE_MODELS.keys()), value="Fast & Light", label="Select Model", info="Choose based on your quality vs speed preference" ) model_info = gr.Markdown( value=get_model_info("Fast & Light"), label="Model Information" ) load_btn = gr.Button("🚀 Load Model", variant="primary", size="lg") with gr.Column(scale=1): gpu_info = gr.Markdown(f""" ### 🖥️ System Info **CUDA Available**: {torch.cuda.is_available()} {f"**GPU**: {torch.cuda.get_device_name(0)}" if torch.cuda.is_available() else "**Device**: CPU"} ### 🔐 Authentication Status {"✅ Token Set" if token_manager.get_token() else "⚠️ No Token - Go to Authentication tab"} """) model_status = gr.Textbox( label="Model Status", value="No model loaded", interactive=False ) # Update model info when selection changes model_dropdown.change( fn=get_model_info, inputs=[model_dropdown], outputs=[model_info] ) # Load model when button clicked load_btn.click( fn=load_model_interface, inputs=[model_dropdown], outputs=[model_status] ) # =============================== # TAB 3: SINGLE QUESTION # =============================== with gr.Tab("❓ Single Question"): gr.Markdown("## Test Individual Questions") with gr.Row(): with gr.Column(): question_input = gr.Textbox( label="Enter your question", placeholder="e.g., What is the capital of France?", lines=3 ) process_btn = gr.Button("🤔 Process Question", variant="primary") # Example questions gr.Markdown("### 💡 Example Questions:") example_questions = [ "What is the capital of France?", "Calculate 144 divided by 12", "What is the largest planet in our solar system?", "Convert 100 degrees Celsius to Fahrenheit" ] for example in example_questions: gr.Button(f"📝 {example}", size="sm").click( lambda x=example: x, outputs=[question_input] ) with gr.Column(): final_answer_output = gr.Textbox( label="🎯 Final Answer", interactive=False ) processing_time = gr.Textbox( label="⏱️ Processing Time", interactive=False ) with gr.Accordion("🧠 Full Response", open=False): full_response = gr.Textbox( label="Complete Model Response", lines=8, interactive=False ) with gr.Accordion("🔍 Reasoning Trace", open=False): reasoning_trace = gr.Textbox( label="Step-by-step Reasoning", lines=6, interactive=False ) # Process single question process_btn.click( fn=single_question_interface, inputs=[question_input], outputs=[final_answer_output, full_response, reasoning_trace, processing_time] ) # =============================== # TAB 4: BATCH EVALUATION # =============================== with gr.Tab("📊 Batch Evaluation"): gr.Markdown("## Evaluate Multiple Questions") with gr.Row(): dataset_choice = gr.Radio( choices=["Sample Questions", "GAIA Validation Set", "GAIA Test Set"], value="Sample Questions", label="Dataset Choice", info="Sample Questions work without authentication" ) max_questions = gr.Slider( minimum=1, maximum=300, value=10, step=1, label="Max Questions", info="Number of questions to evaluate" ) evaluate_btn = gr.Button("🚀 Start Batch Evaluation", variant="primary", size="lg") # Dataset info display with gr.Row(): gr.Markdown(""" ### 📊 Dataset Information **Sample Questions (No Auth Required)**: - 12 curated questions for testing - Works without HuggingFace token - Perfect for setup verification **GAIA Validation Set (Auth Required)**: - ~165 official validation questions - Good for model development - May include reference answers **GAIA Test Set (Auth Required)**: - ~450 official test questions - Used for leaderboard submissions - Answers typically hidden (blind evaluation) """) with gr.Row(): with gr.Column(): summary_output = gr.Markdown( label="📊 Evaluation Summary", value="No evaluation completed yet" ) with gr.Column(): download_output = gr.File( label="💾 Download Results (JSONL)", visible=False ) with gr.Accordion("📋 Detailed Results", open=False): detailed_output = gr.Markdown( value="Run an evaluation to see detailed results" ) # Batch evaluation with download def batch_eval_with_download(*args): summary, detailed, jsonl_content = batch_evaluate_interface(*args) # Save JSONL for download timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") dataset_name = args[0].lower().replace(" ", "_") filename = f"gaia_{dataset_name}_{timestamp}.jsonl" with open(filename, 'w') as f: f.write(jsonl_content) return summary, detailed, filename evaluate_btn.click( fn=batch_eval_with_download, inputs=[dataset_choice, max_questions], outputs=[summary_output, detailed_output, download_output] ).then( lambda: gr.update(visible=True), outputs=[download_output] ) # =============================== # TAB 5: DATASET PREVIEW # =============================== with gr.Tab("📋 Dataset Preview"): gr.Markdown("## GAIA Dataset Information") preview_btn = gr.Button("🔍 Preview GAIA Dataset", variant="primary") preview_output = gr.Markdown( value="Click above to preview the GAIA dataset structure and your access status" ) gr.Markdown(""" ## 🎯 About GAIA Benchmark **GAIA (General AI Assistant)** is a comprehensive benchmark for evaluating AI assistants on real-world tasks that require: ### 🧠 Key Capabilities Tested: - **Multi-step reasoning**: Complex logical thinking and problem decomposition - **Tool use**: Web browsing, calculations, file processing - **Multi-modality**: Text, images, PDFs, spreadsheets, audio files - **Real-world knowledge**: Current events, specialized domains - **Following instructions**: Precise output formatting ### 📊 Dataset Structure: - **Total Questions**: ~450 in test set, ~165 in validation set - **Difficulty Levels**: - Level 1: Basic questions (≤30 seconds for humans) - Level 2: Intermediate (≤5 minutes for humans) - Level 3: Advanced (≤30 minutes for humans) - **Question Types**: Factual, mathematical, reasoning, research tasks ### 🏆 Current Leaderboard (Top Performers): 1. **GPT-4 + plugins**: ~20% accuracy 2. **Claude-3 Opus**: ~15% accuracy 3. **Gemini Pro**: ~12% accuracy 4. **Human Performance**: ~92% accuracy ### 📁 File Types in GAIA: - Text documents, PDFs - Images (charts, diagrams, photos) - Spreadsheets (CSV, Excel) - Audio files - Web pages and URLs ### 🎯 Evaluation Criteria: - **Exact Match**: Final answer must match exactly - **Case Sensitive**: Proper formatting required - **No Partial Credit**: Binary scoring (correct/incorrect) - **Format Specific**: Numbers vs strings vs lists handled differently ### 🔬 Research Impact: - Used in 50+ research papers - Standard benchmark for assistant evaluation - Drives development of reasoning capabilities - Identifies gaps in current AI systems """) preview_btn.click( fn=preview_gaia_interface, outputs=[preview_output] ) # =============================== # TAB 6: HELP & INFO # =============================== with gr.Tab("ℹ️ Help & Info"): gr.Markdown(""" # 🧠 GAIA Benchmark AI Agent - Complete Guide ## 🎯 Quick Start Guide ### 1. **Authentication** (For GAIA Dataset Access) - Go to "Authentication" tab - Get access to GAIA dataset: https://huggingface.co/datasets/gaia-benchmark/GAIA - Get HF token: https://huggingface.co/settings/tokens - Enter token and test access ### 2. **Model Setup** (Required!) - Go to "Model Setup" tab - Choose a model based on your needs: - **Fast & Light**: Good for testing, works on CPU - **High Quality**: Best results, requires GPU - Click "Load Model" and wait for success message ### 3. **Test Your Setup** - Go to "Single Question" tab - Try example questions like "What is the capital of France?" - Verify your model responds correctly ### 4. **Batch Evaluation** - Go to "Batch Evaluation" tab - Start with "Sample Questions" (no auth needed) - Try 5-10 questions first - Download results for analysis ### 5. **GAIA Dataset** - Use "Dataset Preview" to check access - Try "GAIA Validation Set" for development - Use "GAIA Test Set" for leaderboard submission ## 📊 Dataset Options Explained ### Sample Questions (Always Available) - **12 curated questions** for testing - **No authentication required** - Perfect for verifying your setup - Good for debugging and development ### GAIA Validation Set (Requires Auth) - **~165 official questions** from GAIA - Good for **model development** and tuning - May include reference answers for comparison - Faster to evaluate than full test set ### GAIA Test Set (Requires Auth) - **~450 official questions** from GAIA - Used for **official leaderboard** submissions - Answers typically hidden (blind evaluation) - Takes longer but gives official ranking ## 🏆 Performance Expectations | Model Type | Expected Accuracy | Use Case | |------------|------------------|----------| | **Top Commercial** | 15-20% | GPT-4 + plugins, research | | **Strong Models** | 10-15% | Claude-3, Gemini Pro | | **Good Open Source** | 5-10% | Llama-2-70B, Mixtral | | **Smaller Models** | 1-5% | 7B parameter models | | **Humans** | ~92% | Reference performance | ## 🔧 Troubleshooting ### Authentication Issues - **"Invalid token"**: Check token format (starts with `hf_`) - **"Access denied"**: Request GAIA dataset access first - **"Token not found"**: Get token from HF settings ### Model Issues - **Out of Memory**: Try "Fast & Light" model - **CUDA Errors**: Restart and use CPU mode - **Slow loading**: Normal for large models, be patient ### Evaluation Issues - **No responses**: Ensure model is loaded first - **All errors**: Check model compatibility - **Slow evaluation**: Normal for complex questions ## 📁 Output Files ### JSONL Format (Leaderboard Ready) ```json {"task_id": "gaia_001", "model_answer": "Complete response...", "reasoning_trace": "Step by step..."} {"task_id": "gaia_002", "model_answer": "Complete response...", "reasoning_trace": "Step by step..."} ``` ### Key Fields: - **task_id**: Unique question identifier - **model_answer**: Full model response - **reasoning_trace**: Step-by-step thinking process ## 🚀 Best Practices ### For Accuracy: 1. **Use best model**: Don't compromise on model quality 2. **Test prompts**: Verify prompt format works 3. **Check reasoning**: Review step-by-step traces 4. **Analyze failures**: Learn from incorrect answers ### For Efficiency: 1. **Start small**: Test with 5-10 questions first 2. **Monitor resources**: Watch GPU/CPU usage 3. **Save progress**: Download results frequently 4. **Use appropriate model**: Match model to available hardware ### For Leaderboard: 1. **Use test set**: Official ranking requires test set 2. **Validate format**: Check JSONL is properly formatted 3. **Document approach**: Note any special techniques 4. **Submit promptly**: Upload to official leaderboard ## 🔗 Important Links - **GAIA Dataset**: https://huggingface.co/datasets/gaia-benchmark/GAIA - **GAIA Leaderboard**: https://huggingface.co/spaces/gaia-benchmark/leaderboard - **GAIA Paper**: https://arxiv.org/abs/2311.12983 - **HuggingFace Tokens**: https://huggingface.co/settings/tokens - **Authentication Guide**: https://huggingface.co/docs/hub/security-tokens """) return app # ================================ # MAIN APPLICATION # ================================ if __name__ == "__main__": # Print startup information print("🧠 GAIA Benchmark AI Agent Starting...") print(f"🔐 Environment Token: {'✅ Found' if INITIAL_TOKEN else '⚠️ Not found'}") print(f"🖥️ CUDA Available: {'✅ Yes' if torch.cuda.is_available() else '❌ No (CPU only)'}") if torch.cuda.is_available(): print(f"🎮 GPU: {torch.cuda.get_device_name(0)}") print(""" 💡 Token Setup Options: 1. Environment: export HF_TOKEN=hf_your_token 2. Interface: Enter token in Authentication tab 3. CLI: huggingface-cli login """) app = create_gaia_app() app.launch( server_name="0.0.0.0", server_port=7860, share=False )