# GAIA Dataset - Final Working Implementation for 300 Questions # Based on actual GAIA dataset structure: 2023_all config with test split import os import json import pandas as pd import numpy as np import time from typing import Dict, List, Tuple import requests from datetime import datetime import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm import warnings warnings.filterwarnings('ignore') # Install required packages print("šŸ“¦ Installing required packages...") import subprocess import sys packages = [ "langchain-community", "langchain-core", "langchain-google-genai", "langchain-groq", "langchain-huggingface", "langgraph", "supabase", "sentence-transformers", "tavily-python", "wikipedia", "arxiv", "python-dotenv", "gradio", "datasets", "huggingface_hub" ] for package in packages: subprocess.check_call([sys.executable, "-m", "pip", "install", "-q", package]) print("āœ… All packages installed!") # Import libraries from dotenv import load_dotenv from langchain_core.messages import HumanMessage, SystemMessage from langchain_groq import ChatGroq from langchain_google_genai import ChatGoogleGenerativeAI from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from supabase.client import Client, create_client from datasets import load_dataset from huggingface_hub import login, hf_hub_download # ================================ # API KEYS SETUP # ================================ print("šŸ”‘ Setting up API keys...") API_KEYS = { 'GROQ_API_KEY': "", 'TAVILY_API_KEY': "", 'SUPABASE_URL': '', 'SUPABASE_SERVICE_KEY': '', 'GOOGLE_API_KEY': '', 'HUGGINGFACEHUB_API_TOKEN': 'h' } for key, value in API_KEYS.items(): os.environ[key] = value print(" API keys configured!") # HuggingFace login try: login(token=API_KEYS['HUGGINGFACEHUB_API_TOKEN']) print("HuggingFace authentication successful!") except Exception as e: print(f"HuggingFace login warning: {e}") # ================================ # FINAL GAIA DATASET LOADER # ================================ class FinalGAIALoader: """Final GAIA dataset loader using correct configuration""" def __init__(self): self.dataset = None self.test_data = [] def load_gaia_dataset(self): """Load GAIA dataset using the correct configuration""" print("Loading GAIA dataset with correct configuration...") try: # Based on the dataset code, use "2023_all" config print("Loading with config '2023_all'...") self.dataset = load_dataset( "gaia-benchmark/GAIA", "2023_all", token=True, trust_remote_code=True # Important for custom dataset scripts ) print(f"Dataset loaded successfully!") print(f"Available splits: {list(self.dataset.keys())}") if 'test' in self.dataset: self.test_data = list(self.dataset['test']) print(f"Loaded {len(self.test_data)} test questions") # Analyze the data structure self._analyze_data_structure() return True else: print("No test split found") return False except Exception as e: print(f"Primary method failed: {e}") # Fallback: Try without trust_remote_code try: print("Trying fallback method...") self.dataset = load_dataset( "gaia-benchmark/GAIA", "2023_all", token=True ) if 'test' in self.dataset: self.test_data = list(self.dataset['test']) print(f"Fallback successful! Loaded {len(self.test_data)} questions") self._analyze_data_structure() return True except Exception as e2: print(f"Fallback also failed: {e2}") # Final fallback: Manual download return self._manual_download_fallback() def _manual_download_fallback(self): """Manual download fallback method""" print("Attempting manual download...") try: # Download the metadata file directly metadata_file = hf_hub_download( repo_id="gaia-benchmark/GAIA", filename="2023/test/metadata.jsonl", repo_type="dataset", token=API_KEYS['HUGGINGFACEHUB_API_TOKEN'] ) # Read the JSONL file test_questions = [] with open(metadata_file, 'r', encoding='utf-8') as f: for line in f: if line.strip(): test_questions.append(json.loads(line)) self.test_data = test_questions print(f"Manual download successful! Loaded {len(test_questions)} questions") self._analyze_data_structure() return True except Exception as e: print(f"Manual download failed: {e}") return False def _analyze_data_structure(self): """Analyze the structure of loaded GAIA data""" if not self.test_data: return print(f"\n GAIA Data Analysis:") print(f"Total questions: {len(self.test_data)}") # Show sample item structure if self.test_data: sample = self.test_data[0] print(f"Sample item keys: {list(sample.keys())}") # Level distribution levels = [item.get('Level') for item in self.test_data] level_counts = pd.Series(levels).value_counts().sort_index() print(f"\nLevel distribution:") for level, count in level_counts.items(): print(f" Level {level}: {count} questions") # Sample questions print(f"\nSample questions by level:") for level in sorted(level_counts.index): level_questions = [item for item in self.test_data if item.get('Level') == level] if level_questions: sample_q = level_questions[0]['Question'][:100] print(f" Level {level}: {sample_q}...") def filter_300_questions(self, level1_ratio=0.6, level2_ratio=0.25, level3_ratio=0.15): """Filter exactly 300 questions with specified ratios""" if not self.test_data: print("No test data available") return [] total_questions = 300 level1_count = int(total_questions * level1_ratio) # 180 level2_count = int(total_questions * level2_ratio) # 75 level3_count = total_questions - level1_count - level2_count # 45 print(f"Filtering {total_questions} questions:") print(f" Level 1: {level1_count} questions ({level1_ratio*100:.0f}%)") print(f" Level 2: {level2_count} questions ({level2_ratio*100:.0f}%)") print(f" Level 3: {level3_count} questions ({level3_ratio*100:.0f}%)") # Group by level level_groups = {1: [], 2: [], 3: []} for item in self.test_data: level = item.get('Level') if level in level_groups: level_groups[level].append(item) # Check availability print(f"\nAvailable questions by level:") for level in [1, 2, 3]: available = len(level_groups[level]) print(f" Level {level}: {available} available") # Sample questions filtered_questions = [] np.random.seed(42) # For reproducibility for level, target_count in [(1, level1_count), (2, level2_count), (3, level3_count)]: available = len(level_groups[level]) if available >= target_count: # Random sample sampled_indices = np.random.choice(available, size=target_count, replace=False) sampled = [level_groups[level][i] for i in sampled_indices] filtered_questions.extend(sampled) print(f"Level {level}: Selected {target_count} from {available}") else: # Take all available filtered_questions.extend(level_groups[level]) print(f"Level {level}: Only {available} available (needed {target_count})") print(f"\nšŸ“Š Total filtered: {len(filtered_questions)} questions") # Verify final distribution final_levels = [q['Level'] for q in filtered_questions] final_dist = pd.Series(final_levels).value_counts().sort_index() print(f"Final distribution:") for level, count in final_dist.items(): percentage = (count / len(filtered_questions)) * 100 print(f" Level {level}: {count} questions ({percentage:.1f}%)") return filtered_questions def create_dataframe(self, questions): """Create DataFrame from filtered questions""" if not questions: return pd.DataFrame() data = [] for i, item in enumerate(questions): data.append({ 'id': i, 'task_id': item.get('task_id', f'gaia_{i}'), 'question': item.get('Question', ''), 'level': item.get('Level', 1), 'final_answer': item.get('Final answer', ''), 'file_name': item.get('file_name', ''), 'annotator_metadata': item.get('Annotator Metadata', {}) }) df = pd.DataFrame(data) print(f"šŸ“‹ Created DataFrame with {len(df)} questions") return df # ================================ # ENHANCED SYSTEM PROMPT # ================================ SYSTEM_PROMPT = """ You are an expert research assistant designed to answer complex, multi-step questions from the GAIA benchmark. You have access to powerful tools for web search, Wikipedia, arXiv research, and mathematical calculations. Key Instructions: 1. Read the question carefully and identify what information you need 2. Use tools strategically - web search for current info, Wikipedia for general knowledge, arXiv for research 3. For mathematical questions, use the calculation tools 4. Think step-by-step and show your reasoning 5. Be precise and accurate in your final answer Answer Format: - Provide clear reasoning and methodology - Show any calculations or research steps - End with: FINAL ANSWER: [exact answer] - Keep the final answer concise and precise - Match the format requested (number, name, list, etc.) Examples: Question: What is the population of Tokyo according to the latest census? I need to search for the most recent population data for Tokyo. [uses web_search("Tokyo population latest census")] Based on the search results, the latest census shows... FINAL ANSWER: 13960000 Question: What is 157 * 238? I need to calculate 157 multiplied by 238. [uses multiply(157, 238)] FINAL ANSWER: 37366 """ # ================================ # ENHANCED TOOLS # ================================ @tool def multiply(a: float, b: float) -> float: """Multiply two numbers.""" return a * b @tool def add(a: float, b: float) -> float: """Add two numbers.""" return a + b @tool def subtract(a: float, b: float) -> float: """Subtract two numbers.""" return a - b @tool def divide(a: float, b: float) -> float: """Divide two numbers.""" if abs(b) < 1e-10: raise ValueError("Cannot divide by zero.") return a / b @tool def power(a: float, b: float) -> float: """Calculate a raised to the power of b.""" return a ** b @tool def square_root(a: float) -> float: """Calculate the square root of a number.""" if a < 0: raise ValueError("Cannot calculate square root of negative number.") return a ** 0.5 @tool def modulo(a: float, b: float) -> float: """Calculate a modulo b (remainder after division).""" return a % b @tool def absolute_value(a: float) -> float: """Calculate the absolute value of a number.""" return abs(a) @tool def wiki_search(query: str) -> str: """Search Wikipedia for comprehensive information on a topic.""" try: search_docs = WikipediaLoader(query=query, load_max_docs=3).load() if not search_docs: return f"No Wikipedia results found for: {query}" # Return the most relevant result with more content result = search_docs[0] title = result.metadata.get('title', 'Unknown') content = result.page_content[:1500] return f"Wikipedia article '{title}':\n{content}..." except Exception as e: return f"Wikipedia search failed: {str(e)}" @tool def web_search(query: str) -> str: """Search the web for current, factual information.""" try: search_tool = TavilySearchResults(max_results=4) results = search_tool.invoke(query) if not results: return f"No web results found for: {query}" formatted_results = f"Web search results for '{query}':\n\n" for i, result in enumerate(results, 1): url = result.get('url', 'Unknown URL') content = result.get('content', 'No content')[:800] formatted_results += f"{i}. Source: {url}\n{content}...\n\n" return formatted_results except Exception as e: return f"Web search failed: {str(e)}" @tool def arxiv_search(query: str) -> str: """Search arXiv for academic papers and research.""" try: search_docs = ArxivLoader(query=query, load_max_docs=3).load() if not search_docs: return f"No arXiv papers found for: {query}" formatted_results = f"arXiv search results for '{query}':\n\n" for i, doc in enumerate(search_docs, 1): title = doc.metadata.get('Title', 'Unknown Title') authors = doc.metadata.get('Authors', 'Unknown Authors') content = doc.page_content[:1000] formatted_results += f"{i}. Title: {title}\nAuthors: {authors}\nAbstract: {content}...\n\n" return formatted_results except Exception as e: return f"arXiv search failed: {str(e)}" # All tools tools = [ multiply, add, subtract, divide, power, square_root, modulo, absolute_value, wiki_search, web_search, arxiv_search ] # ================================ # ENHANCED GAIA AGENT # ================================ class EnhancedGAIAAgent: """Enhanced GAIA agent optimized for benchmark performance""" def __init__(self, provider="groq", model="llama3-70b-8192"): self.provider = provider self.model = model self.graph = self._build_graph() def _build_graph(self): """Build optimized agent graph""" print(f"Building enhanced agent: {self.provider} {self.model}") if self.provider == "groq": llm = ChatGroq( model=self.model, temperature=0, max_retries=3, timeout=120 ) elif self.provider == "google": llm = ChatGoogleGenerativeAI( model="gemini-pro", temperature=0, max_retries=3 ) else: raise ValueError("Choose 'groq' or 'google'") llm_with_tools = llm.bind_tools(tools) def assistant_node(state: MessagesState): """Enhanced assistant node with better error handling""" try: messages = state["messages"] # Add system message if not present if not any(isinstance(msg, SystemMessage) for msg in messages): messages = [SystemMessage(content=SYSTEM_PROMPT)] + messages # Invoke LLM response = llm_with_tools.invoke(messages) return {"messages": [response]} except Exception as e: error_msg = f"Assistant error: {str(e)}" print(f" {error_msg}") return {"messages": [HumanMessage(content=f"Error: {error_msg}")]} # Build graph builder = StateGraph(MessagesState) builder.add_node("assistant", assistant_node) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile() def process_question(self, question: str, question_id: str = None) -> Dict: """Process a single GAIA question with enhanced handling""" start_time = time.time() try: # Create message and invoke graph messages = [HumanMessage(content=question)] result = self.graph.invoke({"messages": messages}) # Extract final response final_response = result["messages"][-1].content # Extract final answer more robustly answer = self._extract_final_answer(final_response) processing_time = time.time() - start_time return { 'question_id': question_id, 'question': question, 'full_response': final_response, 'final_answer': answer, 'processing_time': processing_time, 'status': 'success', 'error': None } except Exception as e: processing_time = time.time() - start_time error_msg = str(e) return { 'question_id': question_id, 'question': question, 'full_response': f"Error: {error_msg}", 'final_answer': f"ERROR: {error_msg}", 'processing_time': processing_time, 'status': 'error', 'error': error_msg } def _extract_final_answer(self, response: str) -> str: """Extract final answer more robustly""" if "FINAL ANSWER:" in response: answer = response.split("FINAL ANSWER:")[-1].strip() # Clean up the answer answer = answer.split('\n')[0].strip() # Take first line only return answer else: # Fallback: take last substantial line lines = [line.strip() for line in response.split('\n') if line.strip()] return lines[-1] if lines else response.strip() def evaluate_300_questions(self, questions_df: pd.DataFrame) -> pd.DataFrame: """Evaluate 300 GAIA questions with comprehensive tracking""" print(f"Starting GAIA evaluation: {len(questions_df)} questions") print(f" Estimated time: {len(questions_df) * 15 / 60:.0f}-{len(questions_df) * 25 / 60:.0f} minutes") results = [] # Progress tracking with tqdm(total=len(questions_df), desc="GAIA Evaluation Progress") as pbar: for idx, row in questions_df.iterrows(): question_id = row.get('task_id', f'gaia_{idx}') question = row['question'] level = row['level'] expected = row.get('final_answer', '') print(f"\n Question {idx+1}/{len(questions_df)} - Level {level}") print(f"ID: {question_id}") print(f"Q: {question[:120]}...") # Process question result = self.process_question(question, question_id) # Add metadata result.update({ 'level': level, 'expected_answer': expected, 'question_index': idx }) results.append(result) # Show result status_emoji = "" if result['status'] == 'success' else "" print(f"A: {result['final_answer'][:120]}...") print(f"{status_emoji} Time: {result['processing_time']:.2f}s") # Update progress bar pbar.update(1) pbar.set_postfix({ 'Success Rate': f"{len([r for r in results if r['status'] == 'success'])/len(results):.1%}", 'Avg Time': f"{np.mean([r['processing_time'] for r in results]):.1f}s" }) # Save progress every 25 questions if (idx + 1) % 25 == 0: temp_df = pd.DataFrame(results) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") temp_df.to_csv(f'gaia_progress_{timestamp}.csv', index=False) print(f"šŸ’¾ Progress saved at question {idx+1}") # Rate limiting time.sleep(1.5) results_df = pd.DataFrame(results) print(f"\n GAIA evaluation completed!") return results_df # ================================ # ANALYSIS FUNCTIONS # ================================ def analyze_gaia_results(results_df: pd.DataFrame) -> Dict: """Comprehensive analysis of GAIA results""" if results_df.empty: return {} # Basic metrics total = len(results_df) successful = len(results_df[results_df['status'] == 'success']) success_rate = successful / total error_rate = 1 - success_rate metrics = { 'total_questions': total, 'successful_runs': successful, 'success_rate': success_rate, 'error_rate': error_rate, 'avg_processing_time': results_df['processing_time'].mean(), 'median_processing_time': results_df['processing_time'].median(), 'total_processing_time': results_df['processing_time'].sum() } # Level-wise analysis level_metrics = {} for level in sorted(results_df['level'].unique()): level_data = results_df[results_df['level'] == level] level_success = len(level_data[level_data['status'] == 'success']) level_metrics[f'level_{level}'] = { 'count': len(level_data), 'success_count': level_success, 'success_rate': level_success / len(level_data), 'error_rate': 1 - (level_success / len(level_data)), 'avg_time': level_data['processing_time'].mean() } metrics['by_level'] = level_metrics # Print comprehensive analysis print(f"\n GAIA Benchmark Results Analysis") print(f"=" * 60) print(f" Total Questions: {total}") print(f" Successful: {successful}") print(f" Overall Success Rate: {success_rate:.2%}") print(f" Error Rate: {error_rate:.2%}") print(f" Average Time: {metrics['avg_processing_time']:.2f}s") print(f" Total Time: {metrics['total_processing_time']/60:.1f} minutes") print(f"\n Performance by Difficulty Level:") for level_key, level_data in level_metrics.items(): level_num = level_key.split('_')[1] print(f"Level {level_num}:") print(f" Questions: {level_data['count']}") print(f" Success: {level_data['success_count']}/{level_data['count']} ({level_data['success_rate']:.1%})") print(f" Avg Time: {level_data['avg_time']:.1f}s") return metrics def save_gaia_results(results_df: pd.DataFrame, metrics: Dict): """Save comprehensive GAIA results""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") # Save detailed results results_filename = f'gaia_300_final_results_{timestamp}.csv' results_df.to_csv(results_filename, index=False) print(f" Detailed results: {results_filename}") # Save metrics metrics_filename = f'gaia_300_metrics_{timestamp}.json' with open(metrics_filename, 'w') as f: json.dump(metrics, f, indent=2, default=str) print(f" Metrics: {metrics_filename}") # Create summary report report = f""" # GAIA Benchmark - 300 Questions Evaluation Report Generated: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")} ## Overall Performance - Total Questions: {metrics['total_questions']} - Success Rate: {metrics['success_rate']:.2%} - Average Time: {metrics['avg_processing_time']:.2f}s - Total Time: {metrics['total_processing_time']/60:.1f} minutes ## Level Performance """ for level_key, level_data in metrics['by_level'].items(): level_num = level_key.split('_')[1] report += f""" ### Level {level_num} - Questions: {level_data['count']} - Success Rate: {level_data['success_rate']:.2%} - Average Time: {level_data['avg_time']:.2f}s """ report_filename = f'gaia_300_report_{timestamp}.txt' with open(report_filename, 'w') as f: f.write(report) print(f"šŸ’¾ Report: {report_filename}") return timestamp # ================================ # MAIN EXECUTION # ================================ def main_gaia_300(): """Main function for 300 GAIA questions evaluation""" print(" GAIA Benchmark - 300 Questions Evaluation") print("=" * 60) try: # Step 1: Load GAIA dataset print("\n Step 1: Loading GAIA Dataset") loader = FinalGAIALoader() if not loader.load_gaia_dataset(): print(" Failed to load GAIA dataset") return None, None # Step 2: Filter 300 questions print(f"\n Step 2: Filtering 300 Questions") filtered_questions = loader.filter_300_questions() if len(filtered_questions) < 250: # Allow some flexibility print(f" Only {len(filtered_questions)} questions available") proceed = input("Proceed with available questions? (y/n): ") if proceed.lower() != 'y': return None, None # Create DataFrame questions_df = loader.create_dataframe(filtered_questions) # Step 3: Confirm evaluation print(f"\n Step 3: Ready for Evaluation") print(f" Questions to evaluate: {len(questions_df)}") level_dist = questions_df['level'].value_counts().sort_index() for level, count in level_dist.items(): percentage = (count / len(questions_df)) * 100 print(f" Level {level}: {count} questions ({percentage:.1f}%)") estimated_time = len(questions_df) * 18 / 60 # 18 seconds average per question print(f" Estimated time: {estimated_time:.0f} minutes") # Confirm with user proceed = input(f"\nProceed with {len(questions_df)} questions evaluation? (y/n): ") if proceed.lower() != 'y': print("Evaluation cancelled.") return None, None # Step 4: Initialize enhanced agent print(f"\n Step 4: Initializing Enhanced GAIA Agent") agent = EnhancedGAIAAgent(provider="groq", model="llama3-70b-8192") # Step 5: Run evaluation print(f"\n Step 5: Running GAIA Evaluation") results_df = agent.evaluate_300_questions(questions_df) # Step 6: Analyze results print(f"\n Step 6: Analyzing Results") metrics = analyze_gaia_results(results_df) # Step 7: Save results print(f"\n Step 7: Saving Results") timestamp = save_gaia_results(results_df, metrics) # Final summary print(f"\n GAIA Evaluation Completed Successfully!") print(f" Success Rate: {metrics['success_rate']:.2%}") print(f" Total Time: {metrics['total_processing_time']/60:.1f} minutes") print(f" Files saved with timestamp: {timestamp}") # Performance insights best_level = max(metrics['by_level'].items(), key=lambda x: x[1]['success_rate']) worst_level = min(metrics['by_level'].items(), key=lambda x: x[1]['success_rate']) print(f"\n Key Insights:") print(f" Best Performance: Level {best_level[0].split('_')[1]} ({best_level[1]['success_rate']:.1%})") print(f" Most Challenge: Level {worst_level[0].split('_')[1]} ({worst_level[1]['success_rate']:.1%})") if metrics['success_rate'] >= 0.85: print(" Excellent performance on GAIA benchmark!") elif metrics['success_rate'] >= 0.70: print(" Good performance on GAIA benchmark!") else: print(" Room for improvement on GAIA benchmark.") return results_df, metrics except Exception as e: print(f" Error in main execution: {e}") import traceback traceback.print_exc() return None, None def test_gaia_single(): """Test with a single GAIA question""" print(" Testing Single GAIA Question") print("=" * 40) try: # Load dataset loader = FinalGAIALoader() if not loader.load_gaia_dataset(): print(" Failed to load dataset") return None # Get one question of each level sample_questions = [] for level in [1, 2, 3]: level_questions = [q for q in loader.test_data if q.get('Level') == level] if level_questions: sample_questions.append(level_questions[0]) if not sample_questions: print(" No sample questions found") return None # Test with agent agent = EnhancedGAIAAgent() for i, question_data in enumerate(sample_questions): question = question_data['Question'] level = question_data['Level'] print(f"\n Test {i+1} - Level {level}") print(f"Q: {question[:150]}...") result = agent.process_question(question, f"test_{level}") print(f"A: {result['final_answer']}") print(f" Time: {result['processing_time']:.2f}s") print(f"Status: {result['status']}") return True except Exception as e: print(f" Test failed: {e}") return None def quick_gaia_test(): """Quick test with 10 questions""" print(" Quick GAIA Test - 10 Questions") print("=" * 40) try: # Load and filter loader = FinalGAIALoader() if not loader.load_gaia_dataset(): return None, None # Get 10 questions (3/4/3 distribution) level_groups = {1: [], 2: [], 3: []} for item in loader.test_data: level = item.get('Level') if level in level_groups: level_groups[level].append(item) quick_questions = [] quick_questions.extend(level_groups[1][:3]) # 3 Level 1 quick_questions.extend(level_groups[2][:4]) # 4 Level 2 quick_questions.extend(level_groups[3][:3]) # 3 Level 3 questions_df = loader.create_dataframe(quick_questions) # Run evaluation agent = EnhancedGAIAAgent() results_df = agent.evaluate_300_questions(questions_df) # Quick analysis metrics = analyze_gaia_results(results_df) return results_df, metrics except Exception as e: print(f" Quick test failed: {e}") return None, None # ================================ # EXECUTION # ================================ if __name__ == "__main__": print(" GAIA Benchmark Evaluation System") print("Using correct dataset configuration: 2023_all") print("=" * 60) # Test API connectivity print("\n Testing API Connectivity...") try: # Test Groq test_llm = ChatGroq(model="llama3-8b-8192", temperature=0) test_response = test_llm.invoke([HumanMessage(content="Hello")]) print(" Groq API working") # Test Tavily test_search = TavilySearchResults(max_results=1) test_results = test_search.invoke("test") print(" Tavily API working") except Exception as e: print(f" API test warning: {e}") # Main menu print(f"\nšŸŽ® Choose evaluation option:") print("1. Test single GAIA questions (5 minutes)") print("2. Quick test with 10 questions (15 minutes)") print("3. Full 300 questions evaluation (75-90 minutes)") print("4. Auto-run full evaluation") choice = input("\nEnter choice (1-4): ").strip() if choice == "1": print(" Running single question tests...") test_gaia_single() elif choice == "2": print(" Running quick 10-question test...") results_df, metrics = quick_gaia_test() if results_df is not None: print(f"\n Quick Test Results:") print(f" Success Rate: {metrics['success_rate']:.2%}") print(f"ā±ļø Average Time: {metrics['avg_processing_time']:.1f}s") elif choice == "3" or choice == "4": print(" Starting full GAIA 300 questions evaluation...") results_df, metrics = main_gaia_300() if results_df is not None: print(f"\n Final GAIA Benchmark Results:") print(f" Overall Success Rate: {metrics['success_rate']:.2%}") print(f" Questions Completed: {len(results_df)}") print(f"ā±ļø Total Evaluation Time: {metrics['total_processing_time']/60:.1f} minutes") # Level breakdown for level_key, level_data in metrics['by_level'].items(): level_num = level_key.split('_')[1] print(f" Level {level_num}: {level_data['success_rate']:.1%} success rate") else: print(" Evaluation failed") else: print("Invalid choice. Running single question test...") test_gaia_single() print("\nšŸ GAIA Evaluation System Complete!")