Spaces:
Running
Running
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| import pickle | |
| from gradio import Progress | |
| import numpy as np | |
| import subprocess | |
| import shutil | |
| import matplotlib.pyplot as plt | |
| from sklearn.metrics import roc_curve, auc | |
| import pandas as pd | |
| # Define the function to process the input file and model selection | |
| def process_file(file,label,info,model_name,inc_slider,progress=Progress(track_tqdm=True)): | |
| # progress = gr.Progress(track_tqdm=True) | |
| progress(0, desc="Starting the processing") | |
| with open(file.name, 'r') as f: | |
| content = f.read() | |
| saved_test_dataset = "train.txt" | |
| saved_test_label = "train_label.txt" | |
| saved_train_info="train_info.txt" | |
| # Save the uploaded file content to a specified location | |
| shutil.copyfile(file.name, saved_test_dataset) | |
| shutil.copyfile(label.name, saved_test_label) | |
| shutil.copyfile(info.name, saved_train_info) | |
| # Load the test_info file and the graduation rate file | |
| test_info = pd.read_csv('train_info.txt', sep=',', header=None, engine='python') | |
| grad_rate_data = pd.DataFrame(pd.read_pickle('school_grduation_rate.pkl'),columns=['school_number','grad_rate']) # Load the grad_rate data | |
| # Step 1: Extract unique school numbers from test_info | |
| unique_schools = test_info[0].unique() | |
| # Step 2: Filter the grad_rate_data using the unique school numbers | |
| schools = grad_rate_data[grad_rate_data['school_number'].isin(unique_schools)] | |
| # Define a threshold for high and low graduation rates (adjust as needed) | |
| grad_rate_threshold = 0.9 | |
| # Step 4: Divide schools into high and low graduation rate groups | |
| high_grad_schools = schools[schools['grad_rate'] >= grad_rate_threshold]['school_number'].unique() | |
| low_grad_schools = schools[schools['grad_rate'] < grad_rate_threshold]['school_number'].unique() | |
| # Step 5: Sample percentage of schools from each group | |
| high_sample = pd.Series(high_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist() | |
| low_sample = pd.Series(low_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist() | |
| # Step 6: Combine the sampled schools | |
| random_schools = high_sample + low_sample | |
| # Step 7: Get indices for the sampled schools | |
| indices = test_info[test_info[0].isin(random_schools)].index.tolist() | |
| # Load the test file and select rows based on indices | |
| test = pd.read_csv('train.txt', sep=',', header=None, engine='python') | |
| selected_rows_df2 = test.loc[indices] | |
| # Save the selected rows to a file | |
| selected_rows_df2.to_csv('selected_rows.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ') | |
| # For demonstration purposes, we'll just return the content with the selected model name | |
| if(model_name=="High Graduated Schools"): | |
| finetune_task="highGRschool10" | |
| elif(model_name== "Low Graduated Schools" ): | |
| finetune_task="highGRschool10" | |
| elif(model_name=="Full Set"): | |
| finetune_task="highGRschool10" | |
| else: | |
| finetune_task=None | |
| # print(checkpoint) | |
| progress(0.1, desc="Files created and saved") | |
| # if (inc_val<5): | |
| # model_name="highGRschool10" | |
| # elif(inc_val>=5 & inc_val<10): | |
| # model_name="highGRschool10" | |
| # else: | |
| # model_name="highGRschool10" | |
| progress(0.2, desc="Executing models") | |
| subprocess.run([ | |
| "python", "new_test_saved_finetuned_model.py", | |
| "-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded", | |
| "-finetune_task", "highGRschool10", | |
| "-test_dataset_path","../../../../selected_rows.txt", | |
| # "-test_label_path","../../../../train_label.txt", | |
| "-finetuned_bert_classifier_checkpoint", | |
| "ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42", | |
| "-e",str(1), | |
| "-b",str(1000) | |
| ]) | |
| progress(0.6,desc="Model execution completed") | |
| result = {} | |
| with open("result.txt", 'r') as file: | |
| for line in file: | |
| key, value = line.strip().split(': ', 1) | |
| # print(type(key)) | |
| if key=='epoch': | |
| result[key]=value | |
| else: | |
| result[key]=float(value) | |
| # Create a plot | |
| with open("roc_data.pkl", "rb") as f: | |
| fpr, tpr, _ = pickle.load(f) | |
| roc_auc = auc(fpr, tpr) | |
| fig, ax = plt.subplots() | |
| ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') | |
| ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') | |
| ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'ROC Curve: {model_name}') | |
| ax.legend(loc="lower right") | |
| ax.grid() | |
| # Save plot to a file | |
| plot_path = "plot.png" | |
| fig.savefig(plot_path) | |
| plt.close(fig) | |
| progress(1.0) | |
| # Prepare text output | |
| text_output = f"Model: {model_name}\nResult:\n{result}" | |
| # Prepare text output with HTML formatting | |
| text_output = f""" | |
| Model: {model_name}\n | |
| Result Summary:\n | |
| -----------------\n | |
| Precision: {result['precisions']:.2f}\n | |
| Recall: {result['recalls']:.2f}\n | |
| Time Taken: {result['time_taken_from_start']:.2f} seconds\n | |
| Total Schools in test: {len(unique_schools):.4f}\n | |
| Total Schools taken: {len(random_schools):.4f}\n | |
| High grad schools: {len(high_sample):.4f}\n | |
| Low grad schools: {len(low_sample):.4f}\n | |
| -----------------\n | |
| Note: The ROC Curve is also displayed for the evaluation. | |
| """ | |
| return text_output,plot_path | |
| # List of models for the dropdown menu | |
| models = ["High Graduated Schools", "Low Graduated Schools", "Full Set"] | |
| # Create the Gradio interface | |
| with gr.Blocks(css=""" | |
| body { | |
| background-color: #1e1e1e!important; | |
| font-family: 'Arial', sans-serif; | |
| color: #f5f5f5!important;; | |
| } | |
| .gradio-container { | |
| max-width: 850px!important; | |
| margin: 0 auto!important;; | |
| padding: 20px!important;; | |
| background-color: #292929!important; | |
| border-radius: 10px; | |
| box-shadow: 0 4px 20px rgba(0, 0, 0, 0.2); | |
| } | |
| .gradio-container-4-44-0 .prose h1 { | |
| font-size: var(--text-xxl); | |
| color: #ffffff!important; | |
| } | |
| #title { | |
| color: white!important; | |
| font-size: 2.3em; | |
| font-weight: bold; | |
| text-align: center!important; | |
| margin-bottom: 20px; | |
| } | |
| .description { | |
| text-align: center; | |
| font-size: 1.1em; | |
| color: #bfbfbf; | |
| margin-bottom: 30px; | |
| } | |
| .file-box { | |
| max-width: 180px; | |
| padding: 5px; | |
| background-color: #444!important; | |
| border: 1px solid #666!important; | |
| border-radius: 6px; | |
| height: 80px!important;; | |
| margin: 0 auto!important;; | |
| text-align: center; | |
| color: transparent; | |
| } | |
| .file-box span { | |
| color: #f5f5f5!important; | |
| font-size: 1em; | |
| line-height: 45px; /* Vertically center text */ | |
| } | |
| .dropdown-menu { | |
| max-width: 220px; | |
| margin: 0 auto!important; | |
| background-color: #444!important; | |
| color:#444!important; | |
| border-radius: 6px; | |
| padding: 8px; | |
| font-size: 1.1em; | |
| border: 1px solid #666; | |
| } | |
| .button { | |
| background-color: #4CAF50!important; | |
| color: white!important; | |
| font-size: 1.1em; | |
| padding: 10px 25px; | |
| border-radius: 6px; | |
| cursor: pointer; | |
| transition: background-color 0.2s ease-in-out; | |
| } | |
| .button:hover { | |
| background-color: #45a049!important; | |
| } | |
| .output-text { | |
| background-color: #333!important; | |
| padding: 12px; | |
| border-radius: 8px; | |
| border: 1px solid #666; | |
| font-size: 1.1em; | |
| } | |
| .footer { | |
| text-align: center; | |
| margin-top: 50px; | |
| font-size: 0.9em; | |
| color: #b0b0b0; | |
| } | |
| .svelte-12ioyct .wrap { | |
| display: none !important; | |
| } | |
| .file-label-text { | |
| display: none !important; | |
| } | |
| div.svelte-sfqy0y { | |
| display: flex; | |
| flex-direction: inherit; | |
| flex-wrap: wrap; | |
| gap: var(--form-gap-width); | |
| box-shadow: var(--block-shadow); | |
| border: var(--block-border-width) solid var(--border-color-primary); | |
| border-radius: var(--block-radius); | |
| background: #1f2937!important; | |
| overflow-y: hidden; | |
| } | |
| .block.svelte-12cmxck { | |
| position: relative; | |
| margin: 0; | |
| box-shadow: var(--block-shadow); | |
| border-width: var(--block-border-width); | |
| border-color: var(--block-border-color); | |
| border-radius: var(--block-radius); | |
| background: #1f2937!important; | |
| width: 100%; | |
| line-height: var(--line-sm); | |
| } | |
| .svelte-12ioyct .wrap { | |
| display: none !important; | |
| } | |
| .file-label-text { | |
| display: none !important; | |
| } | |
| input[aria-label="file upload"] { | |
| display: none !important; | |
| } | |
| gradio-app .gradio-container.gradio-container-4-44-0 .contain .file-box span { | |
| font-size: 1em; | |
| line-height: 45px; | |
| color: #1f2937 !important; | |
| } | |
| .wrap.svelte-12ioyct { | |
| display: flex; | |
| flex-direction: column; | |
| justify-content: center; | |
| align-items: center; | |
| min-height: var(--size-60); | |
| color: #1f2937 !important; | |
| line-height: var(--line-md); | |
| height: 100%; | |
| padding-top: var(--size-3); | |
| text-align: center; | |
| margin: auto var(--spacing-lg); | |
| } | |
| span.svelte-1gfkn6j:not(.has-info) { | |
| margin-bottom: var(--spacing-lg); | |
| color: white!important; | |
| } | |
| label.float.svelte-1b6s6s { | |
| position: relative!important; | |
| top: var(--block-label-margin); | |
| left: var(--block-label-margin); | |
| } | |
| label.svelte-1b6s6s { | |
| display: inline-flex; | |
| align-items: center; | |
| z-index: var(--layer-2); | |
| box-shadow: var(--block-label-shadow); | |
| border: var(--block-label-border-width) solid var(--border-color-primary); | |
| border-top: none; | |
| border-left: none; | |
| border-radius: var(--block-label-radius); | |
| background: rgb(120 151 180)!important; | |
| padding: var(--block-label-padding); | |
| pointer-events: none; | |
| color: #1f2937!important; | |
| font-weight: var(--block-label-text-weight); | |
| font-size: var(--block-label-text-size); | |
| line-height: var(--line-sm); | |
| } | |
| .file.svelte-18wv37q.svelte-18wv37q { | |
| display: block!important; | |
| width: var(--size-full); | |
| } | |
| tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) { | |
| background: ##7897b4!important; | |
| color: white; | |
| background: #aca7b2; | |
| } | |
| .gradio-container-4-31-4 .prose h1, .gradio-container-4-31-4 .prose h2, .gradio-container-4-31-4 .prose h3, .gradio-container-4-31-4 .prose h4, .gradio-container-4-31-4 .prose h5 { | |
| color: white; | |
| """) as demo: | |
| gr.Markdown("<h1 id='title'>ASTRA</h1>", elem_id="title") | |
| gr.Markdown("<p class='description'>Upload a .txt file and select a model from the dropdown menu.</p>") | |
| with gr.Row(): | |
| file_input = gr.File(label="Upload a test file", file_types=['.txt'], elem_classes="file-box") | |
| label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box") | |
| info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box") | |
| model_dropdown = gr.Dropdown(choices=models, label="Select Finetune Task", elem_classes="dropdown-menu") | |
| increment_slider = gr.Slider(minimum=1, maximum=100, step=1, label="Schools Percentage", value=1) | |
| with gr.Row(): | |
| output_text = gr.Textbox(label="Output Text") | |
| output_image = gr.Image(label="Output Plot") | |
| btn = gr.Button("Submit") | |
| btn.click(fn=process_file, inputs=[file_input,label_input,info_input,model_dropdown,increment_slider], outputs=[output_text,output_image]) | |
| # Launch the app | |
| demo.launch() |