# -*- coding: utf-8 -*- """app.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1va0D7B5cFROqIv6pNnXrWA4-sMWQp_F2 """ # %pip install torch torchversion torchaudio # !pip install langchain einop accelerate transformers bitsandbytes # !pip install langchain-community from langchain import HuggingFacePipeline from langchain import PromptTemplate, LLMChain from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import os import torch # torch.cuda.is_available() model_id = "tiiuae/falcon-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, cache_dir='./workspace/', torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", offload_folder="offload") model.eval() pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, max_length=2048, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, device_map="auto", ) pipeline("what is a pizza?") template = PromptTemplate(input_variables=['input'], template='{input}') llm = HuggingFacePipeline(pipeline=pipeline) llm_chain = LLMChain(prompt=template, llm=llm) response = llm_chain.run("what is a pizza?") print(response) # !pip install gradio import gradio as gr def generate(promt): return llm_chain.run(promt) title = 'GYANA.AI' description = 'Gyana.AI is based on HKRM model it will take 4-5min to ans' gr.Interface(fn=generate, inputs=['text'], outputs=['text'], title=title, description=description, theme='gstaff/xkcd').launch(share=True)