import os import gradio as gr from huggingface_hub import InferenceClient import requests # Define the file path and URL model_filename = "AstroSage-8B-Q8.0.gguf" model_url = "https://huggingface.co/AstroMLab/AstroSage-8B-GGUF/resolve/main/AstroSage-8B-Q8.0.gguf" # Check if the model file exists locally; if not, download it if not os.path.exists(model_filename): print(f"{model_filename} not found. Downloading...") response = requests.get(model_url, stream=True) response.raise_for_status() # Check for any download errors with open(model_filename, "wb") as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) print(f"Downloaded {model_filename} successfully.") # Initialize the InferenceClient with the local file path client = InferenceClient(model_filename) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Gradio Chat Interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="Assume the role of AstroSage, a helpful chatbot designed to answer user queries about astronomy, astrophysics, and cosmology.", label="System message", ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()