File size: 13,617 Bytes
f26f739 909d9bf 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 0a6cb95 023e423 0a6cb95 023e423 8c3e1fb 023e423 909d9bf 023e423 909d9bf 023e423 909d9bf 023e423 8c3e1fb 023e423 8c3e1fb 023e423 0a6cb95 023e423 0a6cb95 023e423 0a6cb95 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 8c3e1fb 023e423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
---
title: Spanish Embeddings Api
emoji: 🐨
colorFrom: green
colorTo: green
sdk: docker
pinned: false
---
# Multilingual & Legal Embeddings API
A high-performance FastAPI application providing access to **5 specialized embedding models** for Spanish, Catalan, English, and multilingual text. Each model has its own dedicated endpoint for optimal performance and clarity.
🌐 **Live API**: [https://aurasystems-spanish-embeddings-api.hf.space](https://aurasystems-spanish-embeddings-api.hf.space)
📖 **Interactive Docs**: [https://aurasystems-spanish-embeddings-api.hf.space/docs](https://aurasystems-spanish-embeddings-api.hf.space/docs)
## 🚀 Quick Start
### Basic Usage
```bash
# Test jina-v3 endpoint (multilingual, loads at startup)
curl -X POST "https://aurasystems-spanish-embeddings-api.hf.space/embed/jina-v3" \
-H "Content-Type: application/json" \
-d '{"texts": ["Hello world", "Hola mundo"], "normalize": true}'
# Test Catalan RoBERTa endpoint
curl -X POST "https://aurasystems-spanish-embeddings-api.hf.space/embed/roberta-ca" \
-H "Content-Type: application/json" \
-d '{"texts": ["Bon dia", "Com estàs?"], "normalize": true}'
```
## 📚 Available Models & Endpoints
| Endpoint | Model | Languages | Dimensions | Max Tokens | Loading Strategy |
|----------|--------|-----------|------------|------------|------------------|
| `/embed/jina-v3` | jinaai/jina-embeddings-v3 | Multilingual (30+) | 1024 | 8192 | **Startup** |
| `/embed/roberta-ca` | projecte-aina/roberta-large-ca-v2 | Catalan | 1024 | 512 | On-demand |
| `/embed/jina` | jinaai/jina-embeddings-v2-base-es | Spanish, English | 768 | 8192 | On-demand |
| `/embed/robertalex` | PlanTL-GOB-ES/RoBERTalex | Spanish Legal | 768 | 512 | On-demand |
| `/embed/legal-bert` | nlpaueb/legal-bert-base-uncased | English Legal | 768 | 512 | On-demand |
### Model Recommendations
- **🌍 General multilingual**: Use `/embed/jina-v3` - Best overall performance
- **🇪🇸 Spanish general**: Use `/embed/jina` - Excellent for Spanish/English
- **🇪🇸 Spanish legal**: Use `/embed/robertalex` - Specialized for legal texts
- **🏴 Catalan**: Use `/embed/roberta-ca` - Best for Catalan text
- **🇬🇧 English legal**: Use `/embed/legal-bert` - Specialized for legal documents
## 🔗 API Endpoints
### Model-Specific Embedding Endpoints
Each model has its dedicated endpoint:
```
POST /embed/jina-v3 # Multilingual (startup model)
POST /embed/roberta-ca # Catalan
POST /embed/jina # Spanish/English
POST /embed/robertalex # Spanish Legal
POST /embed/legal-bert # English Legal
```
### Utility Endpoints
```
GET / # API information
GET /health # Health check and model status
GET /models # List all models with specifications
```
## 📖 Usage Examples
### Python
```python
import requests
API_URL = "https://aurasystems-spanish-embeddings-api.hf.space"
# Example 1: Multilingual with Jina v3 (startup model - fastest)
response = requests.post(
f"{API_URL}/embed/jina-v3",
json={
"texts": [
"Hello world", # English
"Hola mundo", # Spanish
"Bonjour monde", # French
"こんにちは世界" # Japanese
],
"normalize": True
}
)
result = response.json()
print(f"Jina v3: {result['dimensions']} dimensions") # 1024
# Example 2: Catalan text with RoBERTa-ca
response = requests.post(
f"{API_URL}/embed/roberta-ca",
json={
"texts": [
"Bon dia, com estàs?",
"Barcelona és una ciutat meravellosa",
"M'agrada la cultura catalana"
],
"normalize": True
}
)
catalan_result = response.json()
print(f"Catalan: {catalan_result['dimensions']} dimensions") # 1024
# Example 3: Spanish legal text with RoBERTalex
response = requests.post(
f"{API_URL}/embed/robertalex",
json={
"texts": [
"Artículo primero de la constitución",
"El contrato será válido desde la fecha de firma",
"La jurisprudencia establece que..."
],
"normalize": True
}
)
legal_result = response.json()
print(f"Spanish Legal: {legal_result['dimensions']} dimensions") # 768
# Example 4: English legal text with Legal-BERT
response = requests.post(
f"{API_URL}/embed/legal-bert",
json={
"texts": [
"This agreement is legally binding",
"The contract shall be governed by English law",
"The party hereby agrees and covenants"
],
"normalize": True
}
)
english_legal_result = response.json()
print(f"English Legal: {english_legal_result['dimensions']} dimensions") # 768
# Example 5: Spanish/English bilingual with Jina v2
response = requests.post(
f"{API_URL}/embed/jina",
json={
"texts": [
"Inteligencia artificial y machine learning",
"Artificial intelligence and machine learning",
"Procesamiento de lenguaje natural"
],
"normalize": True
}
)
bilingual_result = response.json()
print(f"Bilingual: {bilingual_result['dimensions']} dimensions") # 768
```
### JavaScript/Node.js
```javascript
const API_URL = 'https://aurasystems-spanish-embeddings-api.hf.space';
// Function to get embeddings from specific endpoint
async function getEmbeddings(endpoint, texts) {
const response = await fetch(`${API_URL}/embed/${endpoint}`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
texts: texts,
normalize: true
})
});
if (!response.ok) {
throw new Error(`Error: ${response.status}`);
}
return await response.json();
}
// Usage examples
try {
// Multilingual embeddings
const multilingualResult = await getEmbeddings('jina-v3', [
'Hello world',
'Hola mundo',
'Ciao mondo'
]);
console.log('Multilingual dimensions:', multilingualResult.dimensions);
// Catalan embeddings
const catalanResult = await getEmbeddings('roberta-ca', [
'Bon dia',
'Com estàs?'
]);
console.log('Catalan dimensions:', catalanResult.dimensions);
} catch (error) {
console.error('Error:', error);
}
```
### cURL Examples
```bash
# Multilingual with Jina v3 (startup model)
curl -X POST "https://aurasystems-spanish-embeddings-api.hf.space/embed/jina-v3" \
-H "Content-Type: application/json" \
-d '{
"texts": ["Hello", "Hola", "Bonjour"],
"normalize": true
}'
# Catalan with RoBERTa-ca
curl -X POST "https://aurasystems-spanish-embeddings-api.hf.space/embed/roberta-ca" \
-H "Content-Type: application/json" \
-d '{
"texts": ["Bon dia", "Com estàs?"],
"normalize": true
}'
# Spanish legal with RoBERTalex
curl -X POST "https://aurasystems-spanish-embeddings-api.hf.space/embed/robertalex" \
-H "Content-Type: application/json" \
-d '{
"texts": ["Artículo primero"],
"normalize": true
}'
# English legal with Legal-BERT
curl -X POST "https://aurasystems-spanish-embeddings-api.hf.space/embed/legal-bert" \
-H "Content-Type: application/json" \
-d '{
"texts": ["This agreement is binding"],
"normalize": true
}'
# Spanish/English bilingual with Jina v2
curl -X POST "https://aurasystems-spanish-embeddings-api.hf.space/embed/jina" \
-H "Content-Type: application/json" \
-d '{
"texts": ["Texto en español", "Text in English"],
"normalize": true
}'
```
## 📋 Request/Response Schema
### Request Body
```json
{
"texts": ["text1", "text2", "..."],
"normalize": true,
"max_length": null
}
```
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `texts` | array[string] | ✅ Yes | - | 1-50 texts to embed |
| `normalize` | boolean | No | `true` | L2-normalize embeddings |
| `max_length` | integer/null | No | `null` | Max tokens (model-specific limits) |
### Response Body
```json
{
"embeddings": [[0.123, -0.456, ...], [0.789, -0.012, ...]],
"model_used": "jina-v3",
"dimensions": 1024,
"num_texts": 2
}
```
## ⚡ Performance & Limits
- **Maximum texts per request**: 50
- **Startup model**: `jina-v3` loads at startup (fastest response)
- **On-demand models**: Load on first request (~30-60s first time)
- **Typical response time**: 100-300ms after models are loaded
- **Memory optimization**: Automatic cleanup for large batches
- **CORS enabled**: Works from any domain
## 🔧 Advanced Usage
### LangChain Integration
```python
from langchain.embeddings.base import Embeddings
from typing import List
import requests
class MultilingualEmbeddings(Embeddings):
"""LangChain integration for multilingual embeddings"""
def __init__(self, endpoint: str = "jina-v3"):
"""
Initialize with specific endpoint
Args:
endpoint: One of "jina-v3", "roberta-ca", "jina", "robertalex", "legal-bert"
"""
self.api_url = f"https://aurasystems-spanish-embeddings-api.hf.space/embed/{endpoint}"
self.endpoint = endpoint
def embed_documents(self, texts: List[str]) -> List[List[float]]:
response = requests.post(
self.api_url,
json={"texts": texts, "normalize": True}
)
response.raise_for_status()
return response.json()["embeddings"]
def embed_query(self, text: str) -> List[float]:
return self.embed_documents([text])[0]
# Usage examples
multilingual_embeddings = MultilingualEmbeddings("jina-v3")
catalan_embeddings = MultilingualEmbeddings("roberta-ca")
spanish_legal_embeddings = MultilingualEmbeddings("robertalex")
```
### Semantic Search
```python
import numpy as np
from typing import List, Tuple
def semantic_search(query: str, documents: List[str], endpoint: str = "jina-v3", top_k: int = 5):
"""Semantic search using specific model endpoint"""
response = requests.post(
f"https://aurasystems-spanish-embeddings-api.hf.space/embed/{endpoint}",
json={"texts": [query] + documents, "normalize": True}
)
embeddings = np.array(response.json()["embeddings"])
query_embedding = embeddings[0]
doc_embeddings = embeddings[1:]
# Calculate cosine similarities (already normalized)
similarities = np.dot(doc_embeddings, query_embedding)
top_indices = np.argsort(similarities)[::-1][:top_k]
return [(idx, similarities[idx]) for idx in top_indices]
# Example: Multilingual search
documents = [
"Python programming language",
"Lenguaje de programación Python",
"Llenguatge de programació Python",
"Language de programmation Python"
]
results = semantic_search("código en Python", documents, "jina-v3")
for idx, score in results:
print(f"{score:.4f}: {documents[idx]}")
```
## 🚨 Error Handling
### HTTP Status Codes
| Code | Description |
|------|-------------|
| 200 | Success |
| 400 | Bad Request (validation error) |
| 422 | Unprocessable Entity (schema error) |
| 500 | Internal Server Error (model loading failed) |
### Common Errors
```python
# Handle errors properly
try:
response = requests.post(
"https://aurasystems-spanish-embeddings-api.hf.space/embed/jina-v3",
json={"texts": ["text"], "normalize": True}
)
response.raise_for_status()
result = response.json()
except requests.exceptions.HTTPError as e:
print(f"HTTP error: {e}")
print(f"Response: {response.text}")
except requests.exceptions.RequestException as e:
print(f"Request error: {e}")
```
## 📊 Model Status Check
```python
# Check which models are loaded
health = requests.get("https://aurasystems-spanish-embeddings-api.hf.space/health")
status = health.json()
print(f"API Status: {status['status']}")
print(f"Startup model loaded: {status['startup_model_loaded']}")
print(f"Available models: {status['available_models']}")
print(f"Models loaded: {status['models_count']}/5")
# Check endpoint status
for model, endpoint_status in status['endpoints'].items():
print(f"{model}: {endpoint_status}")
```
## 🔒 Authentication & Rate Limits
- **Authentication**: None required (open API)
- **Rate limits**: Generous limits on Hugging Face Spaces
- **CORS**: Enabled for all origins
- **Usage**: Free for research and commercial use
## 🏗️ Architecture
### Endpoint-Per-Model Design
- **Startup model**: `jina-v3` loads at application startup for fastest response
- **On-demand loading**: Other models load when first requested
- **Memory optimization**: Progressive loading reduces startup time
- **Model caching**: Once loaded, models remain in memory for fast inference
### Technical Stack
- **FastAPI**: Modern async web framework
- **Transformers**: Hugging Face model library
- **PyTorch**: Deep learning backend
- **Docker**: Containerized deployment
- **Hugging Face Spaces**: Cloud hosting platform
## 📄 Model Licenses
- **Jina models**: Apache 2.0
- **RoBERTa models**: MIT/Apache 2.0
- **Legal-BERT**: Apache 2.0
## 🤝 Support & Contributing
- **Issues**: [GitHub Issues](https://huggingface.co/spaces/AuraSystems/spanish-embeddings-api/discussions)
- **Interactive Docs**: [FastAPI Swagger UI](https://aurasystems-spanish-embeddings-api.hf.space/docs)
- **Model Papers**: Check individual model pages on Hugging Face
---
Built with ❤️ using **FastAPI** and **Hugging Face Transformers** |