File size: 11,007 Bytes
c3aef13 dda5c3b 03eefac c3aef13 03eefac 5861022 03eefac 5861022 03eefac 5861022 03eefac 5861022 c3aef13 909d9bf 03eefac c3aef13 dda5c3b c3aef13 03eefac c3aef13 909d9bf 03eefac c3aef13 03eefac c3aef13 03eefac 0610fdd 03eefac c3aef13 03eefac c3aef13 03eefac c3aef13 03eefac c3aef13 03eefac c3aef13 03eefac c3aef13 0a6cb95 c3aef13 03eefac 5861022 c3aef13 03eefac dda5c3b 0610fdd 03eefac c3aef13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from typing import List
import torch
import uvicorn
from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
from utils.helpers import load_models, get_embeddings, cleanup_memory
# Global model cache
models_cache = {}
# Load jina-v3 at startup (most important model)
STARTUP_MODEL = "jina-v3"
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan handler for startup and shutdown"""
# Startup - load jina-v3 model
try:
global models_cache
print(f"Loading startup model: {STARTUP_MODEL}...")
models_cache = load_models([STARTUP_MODEL])
print(f"Startup model loaded successfully: {list(models_cache.keys())}")
yield
except Exception as e:
print(f"Failed to load startup model: {str(e)}")
# Continue anyway - jina-v3 can be loaded on demand if startup fails
yield
finally:
# Shutdown - cleanup resources
cleanup_memory()
def ensure_model_loaded(model_name: str, max_length_limit: int):
"""Load a specific model on demand if not already loaded"""
global models_cache
if model_name not in models_cache:
try:
print(f"Loading model on demand: {model_name}...")
new_models = load_models([model_name])
models_cache.update(new_models)
print(f"Model {model_name} loaded successfully!")
except Exception as e:
print(f"Failed to load model {model_name}: {str(e)}")
raise HTTPException(status_code=500, detail=f"Model {model_name} loading failed: {str(e)}")
def validate_request_for_model(request: EmbeddingRequest, model_name: str, max_length_limit: int):
"""Validate request parameters for specific model"""
if not request.texts:
raise HTTPException(status_code=400, detail="No texts provided")
if len(request.texts) > 50:
raise HTTPException(status_code=400, detail="Maximum 50 texts per request")
if request.max_length is not None and request.max_length > max_length_limit:
raise HTTPException(status_code=400, detail=f"Max length for {model_name} is {max_length_limit}")
app = FastAPI(
title="Multilingual & Legal Embedding API",
description="Multi-model embedding API with dedicated endpoints per model",
version="4.0.0",
lifespan=lifespan
)
# Add CORS middleware to allow cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify actual domains
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def root():
return {
"message": "Multilingual & Legal Embedding API - Endpoint Per Model",
"version": "4.0.0",
"status": "running",
"docs": "/docs",
"startup_model": STARTUP_MODEL,
"available_endpoints": {
"jina-v3": "/embed/jina-v3",
"roberta-ca": "/embed/roberta-ca",
"jina": "/embed/jina",
"robertalex": "/embed/robertalex",
"legal-bert": "/embed/legal-bert"
}
}
# Jina v3 - Multilingual (loads at startup)
@app.post("/embed/jina-v3", response_model=EmbeddingResponse)
async def embed_jina_v3(request: EmbeddingRequest):
"""Generate embeddings using Jina v3 model (multilingual)"""
try:
ensure_model_loaded("jina-v3", 8192)
validate_request_for_model(request, "jina-v3", 8192)
embeddings = get_embeddings(
request.texts,
"jina-v3",
models_cache,
request.normalize,
request.max_length
)
return EmbeddingResponse(
embeddings=embeddings,
model_used="jina-v3",
dimensions=len(embeddings[0]) if embeddings else 0,
num_texts=len(request.texts)
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
# Catalan RoBERTa
@app.post("/embed/roberta-ca", response_model=EmbeddingResponse)
async def embed_roberta_ca(request: EmbeddingRequest):
"""Generate embeddings using Catalan RoBERTa model"""
try:
ensure_model_loaded("roberta-ca", 512)
validate_request_for_model(request, "roberta-ca", 512)
embeddings = get_embeddings(
request.texts,
"roberta-ca",
models_cache,
request.normalize,
request.max_length
)
return EmbeddingResponse(
embeddings=embeddings,
model_used="roberta-ca",
dimensions=len(embeddings[0]) if embeddings else 0,
num_texts=len(request.texts)
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
# Jina v2 - Spanish/English
@app.post("/embed/jina", response_model=EmbeddingResponse)
async def embed_jina(request: EmbeddingRequest):
"""Generate embeddings using Jina v2 Spanish/English model"""
try:
ensure_model_loaded("jina", 8192)
validate_request_for_model(request, "jina", 8192)
embeddings = get_embeddings(
request.texts,
"jina",
models_cache,
request.normalize,
request.max_length
)
return EmbeddingResponse(
embeddings=embeddings,
model_used="jina",
dimensions=len(embeddings[0]) if embeddings else 0,
num_texts=len(request.texts)
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
# RoBERTalex - Spanish Legal
@app.post("/embed/robertalex", response_model=EmbeddingResponse)
async def embed_robertalex(request: EmbeddingRequest):
"""Generate embeddings using RoBERTalex Spanish legal model"""
try:
ensure_model_loaded("robertalex", 512)
validate_request_for_model(request, "robertalex", 512)
embeddings = get_embeddings(
request.texts,
"robertalex",
models_cache,
request.normalize,
request.max_length
)
return EmbeddingResponse(
embeddings=embeddings,
model_used="robertalex",
dimensions=len(embeddings[0]) if embeddings else 0,
num_texts=len(request.texts)
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
# Legal BERT - English Legal
@app.post("/embed/legal-bert", response_model=EmbeddingResponse)
async def embed_legal_bert(request: EmbeddingRequest):
"""Generate embeddings using Legal BERT English model"""
try:
ensure_model_loaded("legal-bert", 512)
validate_request_for_model(request, "legal-bert", 512)
embeddings = get_embeddings(
request.texts,
"legal-bert",
models_cache,
request.normalize,
request.max_length
)
return EmbeddingResponse(
embeddings=embeddings,
model_used="legal-bert",
dimensions=len(embeddings[0]) if embeddings else 0,
num_texts=len(request.texts)
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
@app.get("/models", response_model=List[ModelInfo])
async def list_models():
"""List available models and their specifications"""
return [
ModelInfo(
model_id="jina-v3",
name="jinaai/jina-embeddings-v3",
dimensions=1024,
max_sequence_length=8192,
languages=["Multilingual"],
model_type="multilingual",
description="Latest Jina v3 with superior multilingual performance - loaded at startup"
),
ModelInfo(
model_id="roberta-ca",
name="projecte-aina/roberta-large-ca-v2",
dimensions=1024,
max_sequence_length=512,
languages=["Catalan"],
model_type="general",
description="Catalan RoBERTa-large model trained on large corpus"
),
ModelInfo(
model_id="jina",
name="jinaai/jina-embeddings-v2-base-es",
dimensions=768,
max_sequence_length=8192,
languages=["Spanish", "English"],
model_type="bilingual",
description="Bilingual Spanish-English embeddings with long context support"
),
ModelInfo(
model_id="robertalex",
name="PlanTL-GOB-ES/RoBERTalex",
dimensions=768,
max_sequence_length=512,
languages=["Spanish"],
model_type="legal domain",
description="Spanish legal domain specialized embeddings"
),
ModelInfo(
model_id="legal-bert",
name="nlpaueb/legal-bert-base-uncased",
dimensions=768,
max_sequence_length=512,
languages=["English"],
model_type="legal domain",
description="English legal domain BERT model"
)
]
@app.get("/health")
async def health_check():
"""Health check endpoint"""
startup_loaded = STARTUP_MODEL in models_cache
return {
"status": "healthy" if startup_loaded else "partial",
"startup_model": STARTUP_MODEL,
"startup_model_loaded": startup_loaded,
"available_models": list(models_cache.keys()),
"models_count": len(models_cache),
"endpoints": {
"jina-v3": f"/embed/jina-v3 {'(ready)' if 'jina-v3' in models_cache else '(loads on demand)'}",
"roberta-ca": f"/embed/roberta-ca {'(ready)' if 'roberta-ca' in models_cache else '(loads on demand)'}",
"jina": f"/embed/jina {'(ready)' if 'jina' in models_cache else '(loads on demand)'}",
"robertalex": f"/embed/robertalex {'(ready)' if 'robertalex' in models_cache else '(loads on demand)'}",
"legal-bert": f"/embed/legal-bert {'(ready)' if 'legal-bert' in models_cache else '(loads on demand)'}"
}
}
if __name__ == "__main__":
# Set multi-threading for CPU
torch.set_num_threads(8)
torch.set_num_interop_threads(1)
uvicorn.run(app, host="0.0.0.0", port=7860) |