File size: 18,318 Bytes
401ee04
 
 
 
 
867915a
9baa986
401ee04
 
 
 
 
 
 
 
 
 
 
 
67b8b63
 
 
 
 
 
 
 
 
 
764c2d9
 
 
9baa986
699d761
 
867915a
 
699d761
401ee04
 
 
 
 
 
 
 
 
867915a
 
 
 
 
 
 
 
 
 
 
 
 
764c2d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401ee04
 
 
 
 
764c2d9
 
 
 
401ee04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
867915a
764c2d9
401ee04
 
 
 
 
 
764c2d9
401ee04
764c2d9
867915a
 
764c2d9
867915a
764c2d9
 
 
 
 
 
 
 
 
401ee04
 
 
 
 
 
 
 
 
 
 
764c2d9
401ee04
 
 
764c2d9
 
401ee04
 
764c2d9
 
401ee04
 
 
 
867915a
401ee04
867915a
401ee04
 
 
 
 
 
 
67b8b63
401ee04
 
 
 
 
 
 
 
 
 
 
67b8b63
 
 
 
401ee04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67b8b63
401ee04
 
 
 
 
 
 
 
 
 
 
 
67b8b63
401ee04
 
 
 
 
 
 
67b8b63
 
 
 
867915a
401ee04
867915a
401ee04
 
867915a
 
 
 
 
 
 
 
 
 
 
 
 
 
401ee04
 
 
 
764c2d9
401ee04
 
764c2d9
 
 
 
 
 
 
 
401ee04
 
764c2d9
 
401ee04
867915a
 
 
 
 
 
 
 
 
764c2d9
401ee04
 
769550b
401ee04
 
764c2d9
 
401ee04
 
 
 
 
67b8b63
 
 
 
 
 
 
 
05185f5
67b8b63
 
 
 
 
 
 
401ee04
 
67b8b63
401ee04
 
 
769550b
401ee04
 
 
 
764c2d9
401ee04
 
 
 
 
 
 
 
 
 
 
867915a
 
 
 
 
 
 
 
67b8b63
 
 
 
 
 
 
 
 
 
401ee04
 
 
 
764c2d9
401ee04
05185f5
401ee04
 
 
 
67b8b63
401ee04
 
 
764c2d9
401ee04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764c2d9
 
401ee04
 
67b8b63
764c2d9
401ee04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
867915a
401ee04
 
 
 
 
67b8b63
401ee04
 
 
 
 
67b8b63
401ee04
 
 
 
 
 
 
 
67b8b63
 
 
 
 
401ee04
 
 
 
 
 
764c2d9
401ee04
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import gradio as gr
import os
import threading
import time
from pathlib import Path
from huggingface_hub import hf_hub_download, login, list_repo_files

# Try to import llama-cpp-python, fallback to instructions if not available
try:
    from llama_cpp import Llama
    LLAMA_CPP_AVAILABLE = True
except ImportError:
    LLAMA_CPP_AVAILABLE = False
    print("llama-cpp-python not installed. Please install it with: pip install llama-cpp-python")

# Global variables for model
model = None
model_loaded = False

# Default system prompt
DEFAULT_SYSTEM_PROMPT = """You are MMed-Llama-Alpaca, a helpful AI assistant specialized in medical and healthcare topics. You provide accurate, evidence-based information while being empathetic and understanding. 

Important guidelines:
- Always remind users that your responses are for educational purposes only
- Encourage users to consult healthcare professionals for medical advice
- Be thorough but clear in your explanations
- If unsure about medical information, acknowledge limitations
- Maintain a professional yet caring tone"""

# HuggingFace repository information
HF_REPO_ID = "Axcel1/MMed-llama-alpaca-Q4_K_M-GGUF"
HF_FILENAME = "mmed-llama-alpaca-q4_k_m.gguf"

hf_token = os.environ.get("HF_TOKEN")

if hf_token:
    login(token=hf_token)

def find_gguf_file(directory="."):
    """Find GGUF files in the specified directory"""
    gguf_files = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith('.gguf'):
                gguf_files.append(os.path.join(root, file))
    return gguf_files

def get_repo_gguf_files(repo_id=HF_REPO_ID):
    """Get all GGUF files from the HuggingFace repository"""
    try:
        print(f"Fetching file list from {repo_id}...")
        files = list_repo_files(repo_id=repo_id, token=hf_token)
        gguf_files = [f for f in files if f.endswith('.gguf')]
        print(f"Found {len(gguf_files)} GGUF files in repository")
        return gguf_files, None
    except Exception as e:
        error_msg = f"Error fetching repository files: {str(e)}"
        print(error_msg)
        return [], error_msg

def download_model_from_hf(repo_id=HF_REPO_ID, filename=HF_FILENAME):
    """Download GGUF model from HuggingFace Hub"""
    try:
        print(f"Downloading model from {repo_id}/{filename}...")
        gguf_path = hf_hub_download(
            repo_id=repo_id,
            filename=filename,
            cache_dir="./models",
            resume_download=True  # Resume partial downloads
        )
        print(f"Model downloaded to: {gguf_path}")
        return gguf_path, None
    except Exception as e:
        error_msg = f"Error downloading model: {str(e)}"
        print(error_msg)
        return None, error_msg

def get_optimal_settings():
    """Get optimal CPU threads and GPU layers automatically"""
    # Auto-detect CPU threads (use all available cores)
    n_threads = os.cpu_count()
    
    # For Hugging Face Spaces, limit threads to avoid resource issues
    if n_threads and n_threads > 4:
        n_threads = 4
    
    # Auto-detect GPU layers (try to use GPU if available)
    n_gpu_layers = 0
    try:
        # Try to detect if CUDA is available
        import subprocess
        result = subprocess.run(['nvidia-smi'], capture_output=True, text=True)
        if result.returncode == 0:
            # NVIDIA GPU detected, use more layers
            n_gpu_layers = 35  # Good default for Llama-3-8B
    except:
        # No GPU or CUDA not available
        n_gpu_layers = 0
    
    return n_threads, n_gpu_layers

def load_model_from_gguf(gguf_path=None, filename=None, n_ctx=2048, use_hf_download=True):
    """Load the model from a GGUF file with automatic optimization"""
    global model, model_loaded
    
    if not LLAMA_CPP_AVAILABLE:
        return False, "llama-cpp-python not installed. Please install it with: pip install llama-cpp-python"
    
    try:
        # If no path provided, try different approaches
        if gguf_path is None:
            if use_hf_download:
                # Use the specified filename or default
                selected_filename = filename if filename else HF_FILENAME
                # Try to download from HuggingFace first
                gguf_path, error = download_model_from_hf(filename=selected_filename)
                if error:
                    return False, f"❌ Failed to download from HuggingFace: {error}"
            else:
                # Try to find local GGUF files
                gguf_files = find_gguf_file()
                if not gguf_files:
                    return False, "No GGUF files found in the repository"
                gguf_path = gguf_files[0]  # Use the first one found
                print(f"Found local GGUF file: {gguf_path}")
        
        # Check if file exists
        if not os.path.exists(gguf_path):
            return False, f"GGUF file not found: {gguf_path}"
        
        print(f"Loading model from: {gguf_path}")
        
        # Get optimal settings automatically
        n_threads, n_gpu_layers = get_optimal_settings()
        print(f"Auto-detected settings: {n_threads} CPU threads, {n_gpu_layers} GPU layers")
        
        # Load model with optimized settings for Hugging Face Spaces
        model = Llama(
            model_path=gguf_path,
            n_ctx=n_ctx,  # Context window (configurable)
            n_threads=n_threads,  # CPU threads (limited for Spaces)
            n_gpu_layers=n_gpu_layers,  # Number of layers to offload to GPU
            verbose=False,
            chat_format="llama-3",  # Use Llama-3 chat format
            n_batch=256,  # Smaller batch size for Spaces
            use_mlock=False,  # Disabled for Spaces compatibility
            use_mmap=True,  # Use memory mapping
        )
        
        model_loaded = True
        selected_filename = filename if filename else os.path.basename(gguf_path)
        print("Model loaded successfully!")
        return True, f"✅ Model loaded successfully: {selected_filename}\n📊 Context: {n_ctx} tokens\n🖥️ CPU Threads: {n_threads}\n🎮 GPU Layers: {n_gpu_layers}\n📦 Source: {HF_REPO_ID}"
        
    except Exception as e:
        model_loaded = False
        error_msg = f"Error loading model: {str(e)}"
        print(error_msg)
        return False, f"❌ {error_msg}"

def generate_response_stream(message, history, system_prompt, max_tokens=512, temperature=0.7, top_p=0.9, repeat_penalty=1.1):
    """Generate response from the model with streaming"""
    global model, model_loaded
    
    if not model_loaded or model is None:
        yield "Error: Model not loaded. Please load the model first."
        return
    
    try:
        # Format the conversation history for Llama-3
        conversation = []
        
        # Add system prompt if provided
        if system_prompt and system_prompt.strip():
            conversation.append({"role": "system", "content": system_prompt.strip()})
        
        # Add conversation history
        for human, assistant in history:
            conversation.append({"role": "user", "content": human})
            if assistant:  # Only add if assistant response exists
                conversation.append({"role": "assistant", "content": assistant})
        
        # Add current message
        conversation.append({"role": "user", "content": message})
        
        # Generate response with streaming
        response = ""
        stream = model.create_chat_completion(
            messages=conversation,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            repeat_penalty=repeat_penalty,
            stream=True,
            stop=["<|eot_id|>", "<|end_of_text|>"]
        )
        
        for chunk in stream:
            if chunk['choices'][0]['delta'].get('content'):
                new_text = chunk['choices'][0]['delta']['content']
                response += new_text
                yield response
                
    except Exception as e:
        yield f"Error generating response: {str(e)}"

def chat_interface(message, history, system_prompt, max_tokens, temperature, top_p, repeat_penalty):
    """Main chat interface function"""
    if not message.strip():
        return history, ""
    
    if not model_loaded:
        history.append((message, "Please load the model first using the 'Load Model' button."))
        return history, ""
    
    # Add user message to history
    history = history + [(message, "")]
    
    # Generate response
    for response in generate_response_stream(message, history[:-1], system_prompt, max_tokens, temperature, top_p, repeat_penalty):
        history[-1] = (message, response)
        yield history, ""

def clear_chat():
    """Clear the chat history"""
    return [], ""

def reset_system_prompt():
    """Reset system prompt to default"""
    return DEFAULT_SYSTEM_PROMPT

def load_model_interface(context_size, selected_model):
    """Interface function to load model with configurable context size"""
    success, message = load_model_from_gguf(gguf_path=None, filename=selected_model, n_ctx=int(context_size), use_hf_download=True)
    return message

def refresh_model_list():
    """Refresh the list of available GGUF models from the repository"""
    gguf_files, error = get_repo_gguf_files()
    if error:
        return gr.Dropdown(choices=["Error loading models"], value="Error loading models")
    
    if not gguf_files:
        return gr.Dropdown(choices=["No GGUF files found"], value="No GGUF files found")
    
    # Set default value to the original default file if it exists
    default_value = HF_FILENAME if HF_FILENAME in gguf_files else gguf_files[0]
    
    return gr.Dropdown(choices=gguf_files, value=default_value)

def get_available_gguf_files():
    """Get list of available GGUF files"""
    gguf_files = find_gguf_file()
    if not gguf_files:
        return ["No local GGUF files found"]
    return [os.path.basename(f) for f in gguf_files]

def check_model_availability():
    """Check if model is available locally or needs to be downloaded"""
    local_files = find_gguf_file()
    if local_files:
        return f"Local GGUF files found: {len(local_files)}"
    else:
        return "No local GGUF files found. Will download from HuggingFace."

# Create the Gradio interface
def create_interface():
    # Check for available models
    availability_status = check_model_availability()
    
    # Get initial list of GGUF files from repository
    gguf_files, error = get_repo_gguf_files()
    if error or not gguf_files:
        initial_choices = ["Error loading models" if error else "No GGUF files found"]
        initial_value = initial_choices[0]
    else:
        initial_choices = gguf_files
        initial_value = HF_FILENAME if HF_FILENAME in gguf_files else gguf_files[0]
    
    with gr.Blocks(title="MMed-Llama-Alpaca GGUF Chatbot", theme=gr.themes.Soft()) as demo:
        gr.HTML("""
            <h1 style="text-align: center; color: #2E86AB; margin-bottom: 30px;">
                🦙 MMed-Llama-Alpaca Chatbot
            </h1>
            <p style="text-align: center; color: #666; margin-bottom: 30px;">
                Chat with the MMed-Llama-Alpaca model (Q4_K_M quantized) for medical assistance!<br>
                <strong>⚠️ This is for educational purposes only. Always consult healthcare professionals for medical advice.</strong>
            </p>
        """)
        
        with gr.Row():
            with gr.Column(scale=4):
                # System prompt configuration
                gr.HTML("<h3>🎯 System Prompt Configuration</h3>")
                with gr.Row():
                    system_prompt = gr.Textbox(
                        label="System Prompt",
                        value=DEFAULT_SYSTEM_PROMPT,
                        placeholder="Enter system prompt to define the AI's behavior and role...",
                        lines=4,
                        max_lines=15,
                        scale=4,
                        autoscroll=True,
                    )
                    # with gr.Column(scale=1):
                    #     reset_prompt_btn = gr.Button("Reset to Default", variant="secondary", size="sm")
                    #     gr.HTML("<p style='font-size: 0.8em; color: #666; margin-top: 10px;'>The system prompt defines how the AI should behave and respond. Changes apply to new conversations.</p>")
                
                # Chat interface
                chatbot = gr.Chatbot(
                    height=400,
                    show_copy_button=True,
                    bubble_full_width=False,
                    show_label=False,
                    placeholder="Ask anything"
                )
                
                with gr.Row():
                    msg = gr.Textbox(
                        placeholder="Type your medical question here...",
                        container=False,
                        scale=7,
                        show_label=False
                    )
                    submit_btn = gr.Button("Send", variant="primary", scale=1)
                    clear_btn = gr.Button("Clear", variant="secondary", scale=1)
                
            with gr.Column(scale=1):
                # Model loading section
                gr.HTML("<h3>🔧 Model Control</h3>")
                
                # Model selection dropdown
                model_dropdown = gr.Dropdown(
                    choices=initial_choices,
                    value=initial_value,
                    label="Select GGUF Model",
                    info="Choose from available models in the repository",
                    interactive=True
                )

                # Context size (limited for Spaces)
                context_size = gr.Slider(
                    minimum=512,
                    maximum=8192,
                    value=2048,
                    step=256,
                    label="Context Size",
                    info="Token context window (requires model reload)"
                )
                
                load_btn = gr.Button("Load Model", variant="primary", size="lg")
                model_status = gr.Textbox(
                    label="Status",
                    value=f"Model not loaded.\n{availability_status}\n⚙️ Auto-optimized: CPU threads & GPU layers auto-detected\n📝 Context size can be configured below",
                    interactive=False,
                    max_lines=10
                )
                
                # Generation parameters
                gr.HTML("<h3>⚙️ Generation Settings</h3>")
            
                
                max_tokens = gr.Slider(
                    minimum=50,
                    maximum=1024,
                    value=512,
                    step=50,
                    label="Max Tokens",
                    info="Maximum response length"
                )
                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=2.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature",
                    info="Creativity (higher = more creative)"
                )
                top_p = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.9,
                    step=0.1,
                    label="Top-p",
                    info="Nucleus sampling"
                )
                repeat_penalty = gr.Slider(
                    minimum=1.0,
                    maximum=1.5,
                    value=1.1,
                    step=0.1,
                    label="Repeat Penalty",
                    info="Penalize repetition"
                )
                
                # Information section
                gr.HTML("""
                    <h3>ℹ️ About</h3>
                    <p><strong>Model:</strong> MMed-Llama-Alpaca</p>
                    <p><strong>Quantization:</strong> Q4_K_M</p>
                    <p><strong>Format:</strong> GGUF (optimized)</p>
                    <p><strong>Backend:</strong> llama-cpp-python</p>
                    <p><strong>Features:</strong> CPU/GPU support, streaming, system prompts</p>
                    <p><strong>Specialty:</strong> Medical assistance</p>
                    <p><strong>Auto-Optimization:</strong> CPU threads & GPU layers detected automatically</p>
                """)
                
                if not LLAMA_CPP_AVAILABLE:
                    gr.HTML("""
                        <div style="background-color: #ffebee; padding: 10px; border-radius: 5px; margin-top: 10px;">
                            <p style="color: #c62828; margin: 0;"><strong>⚠️ Missing Dependency</strong></p>
                            <p style="color: #c62828; margin: 0; font-size: 0.9em;">
                                Install llama-cpp-python:<br>
                                <code>pip install llama-cpp-python</code>
                            </p>
                        </div>
                    """)
        
        # Event handlers
        load_btn.click(
            load_model_interface,
            inputs=[context_size, model_dropdown],
            outputs=model_status
        )
        
        submit_btn.click(
            chat_interface,
            inputs=[msg, chatbot, system_prompt, max_tokens, temperature, top_p, repeat_penalty],
            outputs=[chatbot, msg]
        )
        
        msg.submit(
            chat_interface,
            inputs=[msg, chatbot, system_prompt, max_tokens, temperature, top_p, repeat_penalty],
            outputs=[chatbot, msg]
        )
        
        clear_btn.click(
            clear_chat,
            outputs=[chatbot, msg]
        )
        
        # reset_prompt_btn.click(
        #     reset_system_prompt,
        #     outputs=system_prompt
        # )
        
    return demo

if __name__ == "__main__":
    # Create and launch the interface
    demo = create_interface()
    
    # Launch with settings optimized for Hugging Face Spaces
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=False,
        show_error=True,
        quiet=False
    )