Spaces:
Running
Running
Upload 3 files
Browse files- Dockerfile +17 -0
- deepfake_api.py +136 -0
- requirements.txt +9 -0
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a parent image
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the requirements file into the container
|
8 |
+
COPY requirements.txt .
|
9 |
+
|
10 |
+
# Install any needed packages specified in requirements.txt
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Copy the rest of the application's code to the working directory
|
14 |
+
COPY . .
|
15 |
+
|
16 |
+
# Command to run the application
|
17 |
+
CMD ["uvicorn", "deepfake_api:app", "--host", "0.0.0.0", "--port", "7860"]
|
deepfake_api.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# === FASTAPI BACKEND (main.py) ===
|
2 |
+
|
3 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
4 |
+
from fastapi.responses import JSONResponse
|
5 |
+
from fastapi.middleware.cors import CORSMiddleware
|
6 |
+
from transformers import pipeline
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
import torch
|
10 |
+
import numpy as np
|
11 |
+
import cv2
|
12 |
+
import base64
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
app.add_middleware(
|
17 |
+
CORSMiddleware,
|
18 |
+
allow_origins=["*"],
|
19 |
+
allow_credentials=True,
|
20 |
+
allow_methods=["*"],
|
21 |
+
allow_headers=["*"],
|
22 |
+
)
|
23 |
+
|
24 |
+
device = 0 if torch.cuda.is_available() else -1
|
25 |
+
|
26 |
+
MODELS_CONFIG = {
|
27 |
+
"SwinV2 Based": {"path": "haywoodsloan/ai-image-detector-deploy", "weight": 0.15},
|
28 |
+
"ViT Based": {"path": "Heem2/AI-vs-Real-Image-Detection", "weight": 0.15},
|
29 |
+
"SDXL Dataset": {"path": "Organika/sdxl-detector", "weight": 0.15},
|
30 |
+
"SDXL + FLUX": {"path": "cmckinle/sdxl-flux-detector_v1.1", "weight": 0.15},
|
31 |
+
"DeepFake v2": {"path": "prithivMLmods/Deep-Fake-Detector-v2-Model", "weight": 0.15},
|
32 |
+
"Midjourney/SDXL": {"path": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL", "weight": 0.10},
|
33 |
+
"ViT v4": {"path": "date3k2/vit-real-fake-classification-v4", "weight": 0.15},
|
34 |
+
}
|
35 |
+
|
36 |
+
models = {}
|
37 |
+
for name, config in MODELS_CONFIG.items():
|
38 |
+
try:
|
39 |
+
models[name] = pipeline("image-classification", model=config["path"], device=device)
|
40 |
+
except Exception as e:
|
41 |
+
print(f"Failed to load model {name}: {e}")
|
42 |
+
|
43 |
+
def pil_to_base64(image):
|
44 |
+
buffered = io.BytesIO()
|
45 |
+
image.save(buffered, format="JPEG")
|
46 |
+
return "data:image/jpeg;base64," + base64.b64encode(buffered.getvalue()).decode("utf-8")
|
47 |
+
|
48 |
+
def gen_ela(img_array, quality=90):
|
49 |
+
if img_array.shape[2] == 4:
|
50 |
+
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGBA2RGB)
|
51 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
|
52 |
+
_, buffer = cv2.imencode('.jpg', img_array, encode_param)
|
53 |
+
compressed_img = cv2.imdecode(buffer, cv2.IMREAD_COLOR)
|
54 |
+
ela_img = cv2.absdiff(img_array, compressed_img)
|
55 |
+
ela_img = cv2.convertScaleAbs(ela_img, alpha=10)
|
56 |
+
return Image.fromarray(cv2.cvtColor(ela_img, cv2.COLOR_BGR2RGB))
|
57 |
+
|
58 |
+
def gradient_processing(image_array):
|
59 |
+
gray_img = cv2.cvtColor(image_array, cv2.COLOR_BGR2GRAY)
|
60 |
+
dx = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=3)
|
61 |
+
dy = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=3)
|
62 |
+
gradient_magnitude = cv2.magnitude(dx, dy)
|
63 |
+
gradient_img = cv2.normalize(gradient_magnitude, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
64 |
+
return Image.fromarray(gradient_img)
|
65 |
+
|
66 |
+
@app.post("/detect")
|
67 |
+
async def detect(image: UploadFile = File(...)):
|
68 |
+
try:
|
69 |
+
import time
|
70 |
+
start_time = time.time()
|
71 |
+
|
72 |
+
image_bytes = await image.read()
|
73 |
+
input_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
74 |
+
|
75 |
+
img_np = np.array(input_image)
|
76 |
+
img_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
77 |
+
|
78 |
+
individual_results = []
|
79 |
+
weighted_ai_score = 0
|
80 |
+
total_weight = 0
|
81 |
+
|
82 |
+
aiModels = []
|
83 |
+
colors = ["bg-red-500", "bg-orange-500", "bg-yellow-500", "bg-green-500", "bg-blue-500", "bg-purple-500", "bg-pink-500"]
|
84 |
+
|
85 |
+
for i, (name, model_pipeline) in enumerate(models.items()):
|
86 |
+
model_weight = MODELS_CONFIG[name]["weight"]
|
87 |
+
predictions = model_pipeline(input_image)
|
88 |
+
confidence = {p['label'].lower(): p['score'] for p in predictions}
|
89 |
+
|
90 |
+
artificial_score = (
|
91 |
+
confidence.get('artificial', 0) or confidence.get('ai image', 0) or
|
92 |
+
confidence.get('ai', 0) or confidence.get('deepfake', 0) or
|
93 |
+
confidence.get('ai_gen', 0) or confidence.get('fake', 0)
|
94 |
+
)
|
95 |
+
real_score = (
|
96 |
+
confidence.get('real', 0) or confidence.get('real image', 0) or
|
97 |
+
confidence.get('human', 0) or confidence.get('realism', 0)
|
98 |
+
)
|
99 |
+
|
100 |
+
if artificial_score > 0 and real_score == 0:
|
101 |
+
real_score = 1.0 - artificial_score
|
102 |
+
elif real_score > 0 and artificial_score == 0:
|
103 |
+
artificial_score = 1.0 - real_score
|
104 |
+
|
105 |
+
weighted_ai_score += artificial_score * model_weight
|
106 |
+
total_weight += model_weight
|
107 |
+
|
108 |
+
aiModels.append({
|
109 |
+
"name": name,
|
110 |
+
"percentage": round(artificial_score * 100, 2),
|
111 |
+
"color": colors[i % len(colors)]
|
112 |
+
})
|
113 |
+
|
114 |
+
final_score = (weighted_ai_score / total_weight) * 100 if total_weight > 0 else 0
|
115 |
+
verdict = final_score > 50
|
116 |
+
processing_time = int((time.time() - start_time) * 1000)
|
117 |
+
|
118 |
+
# Forensics
|
119 |
+
ela_img = gen_ela(img_bgr)
|
120 |
+
gradient_img = gradient_processing(img_bgr)
|
121 |
+
|
122 |
+
return JSONResponse({
|
123 |
+
"filename": image.filename,
|
124 |
+
"isDeepfake": verdict,
|
125 |
+
"confidence": round(final_score, 2),
|
126 |
+
"aiModels": aiModels,
|
127 |
+
"processingTime": processing_time,
|
128 |
+
"forensics": {
|
129 |
+
"original": pil_to_base64(input_image),
|
130 |
+
"ela": pil_to_base64(ela_img),
|
131 |
+
"gradient": pil_to_base64(gradient_img)
|
132 |
+
},
|
133 |
+
"verdictMessage": f"Consensus: {'Likely AI-Generated' if verdict else 'Likely Human-Made (Real)'}"
|
134 |
+
})
|
135 |
+
except Exception as e:
|
136 |
+
raise HTTPException(status_code=500, detail=str(e))
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
python-multipart
|
4 |
+
transformers
|
5 |
+
torch
|
6 |
+
Pillow
|
7 |
+
numpy
|
8 |
+
opencv-python-headless
|
9 |
+
python-base64
|