File size: 12,486 Bytes
0135475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Ultralytics YOLO ๐Ÿš€, GPL-3.0 license

import os
from pathlib import Path

import numpy as np
import torch

from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, colorstr, ops
from ultralytics.yolo.utils.checks import check_requirements
from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
from ultralytics.yolo.utils.torch_utils import de_parallel


class DetectionValidator(BaseValidator):

    def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None):
        super().__init__(dataloader, save_dir, pbar, args)
        self.args.task = 'detect'
        self.is_coco = False
        self.class_map = None
        self.metrics = DetMetrics(save_dir=self.save_dir)
        self.iouv = torch.linspace(0.5, 0.95, 10)  # iou vector for mAP@0.5:0.95
        self.niou = self.iouv.numel()

    def preprocess(self, batch):
        batch['img'] = batch['img'].to(self.device, non_blocking=True)
        batch['img'] = (batch['img'].half() if self.args.half else batch['img'].float()) / 255
        for k in ['batch_idx', 'cls', 'bboxes']:
            batch[k] = batch[k].to(self.device)

        nb = len(batch['img'])
        self.lb = [torch.cat([batch['cls'], batch['bboxes']], dim=-1)[batch['batch_idx'] == i]
                   for i in range(nb)] if self.args.save_hybrid else []  # for autolabelling

        return batch

    def init_metrics(self, model):
        val = self.data.get(self.args.split, '')  # validation path
        self.is_coco = isinstance(val, str) and val.endswith(f'coco{os.sep}val2017.txt')  # is COCO dataset
        self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
        self.args.save_json |= self.is_coco and not self.training  # run on final val if training COCO
        self.names = model.names
        self.nc = len(model.names)
        self.metrics.names = self.names
        self.metrics.plot = self.args.plots
        self.confusion_matrix = ConfusionMatrix(nc=self.nc)
        self.seen = 0
        self.jdict = []
        self.stats = []

    def get_desc(self):
        return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)')

    def postprocess(self, preds):
        preds = ops.non_max_suppression(preds,
                                        self.args.conf,
                                        self.args.iou,
                                        labels=self.lb,
                                        multi_label=True,
                                        agnostic=self.args.single_cls,
                                        max_det=self.args.max_det)
        return preds

    def update_metrics(self, preds, batch):
        # Metrics
        for si, pred in enumerate(preds):
            idx = batch['batch_idx'] == si
            cls = batch['cls'][idx]
            bbox = batch['bboxes'][idx]
            nl, npr = cls.shape[0], pred.shape[0]  # number of labels, predictions
            shape = batch['ori_shape'][si]
            correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device)  # init
            self.seen += 1

            if npr == 0:
                if nl:
                    self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
                    if self.args.plots:
                        self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
                continue

            # Predictions
            if self.args.single_cls:
                pred[:, 5] = 0
            predn = pred.clone()
            ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
                            ratio_pad=batch['ratio_pad'][si])  # native-space pred

            # Evaluate
            if nl:
                height, width = batch['img'].shape[2:]
                tbox = ops.xywh2xyxy(bbox) * torch.tensor(
                    (width, height, width, height), device=self.device)  # target boxes
                ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
                                ratio_pad=batch['ratio_pad'][si])  # native-space labels
                labelsn = torch.cat((cls, tbox), 1)  # native-space labels
                correct_bboxes = self._process_batch(predn, labelsn)
                # TODO: maybe remove these `self.` arguments as they already are member variable
                if self.args.plots:
                    self.confusion_matrix.process_batch(predn, labelsn)
            self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1)))  # (conf, pcls, tcls)

            # Save
            if self.args.save_json:
                self.pred_to_json(predn, batch['im_file'][si])
            if self.args.save_txt:
                file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt'
                self.save_one_txt(predn, self.args.save_conf, shape, file)

    def finalize_metrics(self, *args, **kwargs):
        self.metrics.speed = self.speed
        self.metrics.confusion_matrix = self.confusion_matrix

    def get_stats(self):
        stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)]  # to numpy
        if len(stats) and stats[0].any():
            self.metrics.process(*stats)
        self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc)  # number of targets per class
        return self.metrics.results_dict

    def print_results(self):
        pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metrics.keys)  # print format
        LOGGER.info(pf % ('all', self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
        if self.nt_per_class.sum() == 0:
            LOGGER.warning(
                f'WARNING โš ๏ธ no labels found in {self.args.task} set, can not compute metrics without labels')

        # Print results per class
        if self.args.verbose and not self.training and self.nc > 1 and len(self.stats):
            for i, c in enumerate(self.metrics.ap_class_index):
                LOGGER.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))

        if self.args.plots:
            self.confusion_matrix.plot(save_dir=self.save_dir, names=list(self.names.values()))

    def _process_batch(self, detections, labels):
        """
        Return correct prediction matrix
        Arguments:
            detections (array[N, 6]), x1, y1, x2, y2, conf, class
            labels (array[M, 5]), class, x1, y1, x2, y2
        Returns:
            correct (array[N, 10]), for 10 IoU levels
        """
        iou = box_iou(labels[:, 1:], detections[:, :4])
        correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool)
        correct_class = labels[:, 0:1] == detections[:, 5]
        for i in range(len(self.iouv)):
            x = torch.where((iou >= self.iouv[i]) & correct_class)  # IoU > threshold and classes match
            if x[0].shape[0]:
                matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
                                    1).cpu().numpy()  # [label, detect, iou]
                if x[0].shape[0] > 1:
                    matches = matches[matches[:, 2].argsort()[::-1]]
                    matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                    # matches = matches[matches[:, 2].argsort()[::-1]]
                    matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
                correct[matches[:, 1].astype(int), i] = True
        return torch.tensor(correct, dtype=torch.bool, device=detections.device)

    def get_dataloader(self, dataset_path, batch_size):
        # TODO: manage splits differently
        # calculate stride - check if model is initialized
        gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
        return create_dataloader(path=dataset_path,
                                 imgsz=self.args.imgsz,
                                 batch_size=batch_size,
                                 stride=gs,
                                 hyp=vars(self.args),
                                 cache=False,
                                 pad=0.5,
                                 rect=self.args.rect,
                                 workers=self.args.workers,
                                 prefix=colorstr(f'{self.args.mode}: '),
                                 shuffle=False,
                                 seed=self.args.seed)[0] if self.args.v5loader else \
            build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, names=self.data['names'],
                             mode='val')[0]

    def plot_val_samples(self, batch, ni):
        plot_images(batch['img'],
                    batch['batch_idx'],
                    batch['cls'].squeeze(-1),
                    batch['bboxes'],
                    paths=batch['im_file'],
                    fname=self.save_dir / f'val_batch{ni}_labels.jpg',
                    names=self.names)

    def plot_predictions(self, batch, preds, ni):
        plot_images(batch['img'],
                    *output_to_target(preds, max_det=15),
                    paths=batch['im_file'],
                    fname=self.save_dir / f'val_batch{ni}_pred.jpg',
                    names=self.names)  # pred

    def save_one_txt(self, predn, save_conf, shape, file):
        gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
        for *xyxy, conf, cls in predn.tolist():
            xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
            line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
            with open(file, 'a') as f:
                f.write(('%g ' * len(line)).rstrip() % line + '\n')

    def pred_to_json(self, predn, filename):
        stem = Path(filename).stem
        image_id = int(stem) if stem.isnumeric() else stem
        box = ops.xyxy2xywh(predn[:, :4])  # xywh
        box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
        for p, b in zip(predn.tolist(), box.tolist()):
            self.jdict.append({
                'image_id': image_id,
                'category_id': self.class_map[int(p[5])],
                'bbox': [round(x, 3) for x in b],
                'score': round(p[4], 5)})

    def eval_json(self, stats):
        if self.args.save_json and self.is_coco and len(self.jdict):
            anno_json = self.data['path'] / 'annotations/instances_val2017.json'  # annotations
            pred_json = self.save_dir / 'predictions.json'  # predictions
            LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
            try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
                check_requirements('pycocotools>=2.0.6')
                from pycocotools.coco import COCO  # noqa
                from pycocotools.cocoeval import COCOeval  # noqa

                for x in anno_json, pred_json:
                    assert x.is_file(), f'{x} file not found'
                anno = COCO(str(anno_json))  # init annotations api
                pred = anno.loadRes(str(pred_json))  # init predictions api (must pass string, not Path)
                eval = COCOeval(anno, pred, 'bbox')
                if self.is_coco:
                    eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files]  # images to eval
                eval.evaluate()
                eval.accumulate()
                eval.summarize()
                stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2]  # update mAP50-95 and mAP50
            except Exception as e:
                LOGGER.warning(f'pycocotools unable to run: {e}')
        return stats


def val(cfg=DEFAULT_CFG, use_python=False):
    model = cfg.model or 'yolov8n.pt'
    data = cfg.data or 'coco128.yaml'

    args = dict(model=model, data=data)
    if use_python:
        from ultralytics import YOLO
        YOLO(model).val(**args)
    else:
        validator = DetectionValidator(args=args)
        validator(model=args['model'])


if __name__ == '__main__':
    val()