Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# β Predefined knowledge base (Modify this with your data) | |
KNOWLEDGE_BASE = { | |
"what is your name?": "I am a chatbot powered by Zephyr-7B.", | |
"who created you?": "I was created using Gradio and Hugging Face's Zephyr model.", | |
"what is gradio?": "Gradio is an open-source Python library for building interactive UIs for machine learning models." | |
} | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# β Check if the user question is in knowledge base | |
lower_message = message.lower().strip() | |
if lower_message in KNOWLEDGE_BASE: | |
return KNOWLEDGE_BASE[lower_message] | |
# β Otherwise, use the AI model for response | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# β Gradio Chat UI | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |