Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import snapshot_download
|
3 |
+
from vllm import LLM, SamplingParams
|
4 |
+
|
5 |
+
# ------------------------
|
6 |
+
# 1) Load the Model
|
7 |
+
# ------------------------
|
8 |
+
# Download the model repository, specify revision if needed
|
9 |
+
model_dir = snapshot_download(repo_id="BSC-LT/salamandraTA-7B-instruct-GGUF", revision="main")
|
10 |
+
model_name = "salamandrata_7b_inst_q4.gguf"
|
11 |
+
|
12 |
+
# Create an LLM instance from vLLM
|
13 |
+
llm = LLM(model=model_dir + '/' + model_name, tokenizer=model_dir)
|
14 |
+
|
15 |
+
# We can define a single helper function to call the model:
|
16 |
+
def call_model(prompt: str, temperature: float = 0.1, max_tokens: int = 256):
|
17 |
+
"""
|
18 |
+
Sends the prompt to the LLM using vLLM's chat interface.
|
19 |
+
"""
|
20 |
+
messages = [{'role': 'user', 'content': prompt}]
|
21 |
+
outputs = llm.chat(
|
22 |
+
messages,
|
23 |
+
sampling_params=SamplingParams(
|
24 |
+
temperature=temperature,
|
25 |
+
stop_token_ids=[5], # you can adjust the stop token ID if needed
|
26 |
+
max_tokens=max_tokens
|
27 |
+
)
|
28 |
+
)
|
29 |
+
# The model returns a list of "Generation" objects, each containing .outputs
|
30 |
+
return outputs[0].outputs[0].text if outputs else ""
|
31 |
+
|
32 |
+
# ------------------------
|
33 |
+
# 2) Task-specific functions
|
34 |
+
# ------------------------
|
35 |
+
|
36 |
+
def general_translation(source_lang, target_lang, text):
|
37 |
+
"""
|
38 |
+
General translation prompt:
|
39 |
+
Translate from source_lang into target_lang.
|
40 |
+
"""
|
41 |
+
prompt = (
|
42 |
+
f"Translate the following text from {source_lang} into {target_lang}.\n"
|
43 |
+
f"{source_lang}: {text}\n"
|
44 |
+
f"{target_lang}:"
|
45 |
+
)
|
46 |
+
return call_model(prompt, temperature=0.1)
|
47 |
+
|
48 |
+
def post_editing(source_lang, target_lang, source_text, machine_translation):
|
49 |
+
"""
|
50 |
+
Post-editing prompt:
|
51 |
+
Ask the model to fix any mistakes in the machine translation or keep it unedited.
|
52 |
+
"""
|
53 |
+
prompt = (
|
54 |
+
f"Please fix any mistakes in the following {source_lang}-{target_lang} machine translation or keep it unedited if it's correct.\n"
|
55 |
+
f"Source: {source_text}\n"
|
56 |
+
f"MT: {machine_translation}\n"
|
57 |
+
f"Corrected:"
|
58 |
+
)
|
59 |
+
return call_model(prompt, temperature=0.1)
|
60 |
+
|
61 |
+
def document_level_translation(source_lang, target_lang, document_text):
|
62 |
+
"""
|
63 |
+
Document-level translation prompt:
|
64 |
+
Translate a multi-paragraph document.
|
65 |
+
"""
|
66 |
+
prompt = (
|
67 |
+
f"Please translate this text from {source_lang} into {target_lang}.\n"
|
68 |
+
f"{source_lang}: {document_text}\n"
|
69 |
+
f"{target_lang}:"
|
70 |
+
)
|
71 |
+
return call_model(prompt, temperature=0.1)
|
72 |
+
|
73 |
+
def named_entity_recognition(tokenized_text):
|
74 |
+
"""
|
75 |
+
Named-entity recognition prompt:
|
76 |
+
Label tokens as ORG, PER, LOC, MISC, or O.
|
77 |
+
Expects the user to provide a list of tokens.
|
78 |
+
"""
|
79 |
+
# Convert the input string into a list of tokens, if the user typed them as space-separated words
|
80 |
+
# or if the user provided them as a Python list string, we can try to parse that.
|
81 |
+
# For simplicity, let's assume it's a space-separated string.
|
82 |
+
tokens = tokenized_text.strip().split()
|
83 |
+
|
84 |
+
prompt = (
|
85 |
+
"Analyse the following tokenized text and mark the tokens containing named entities.\n"
|
86 |
+
"Use the following annotation guidelines with these tags for named entities:\n"
|
87 |
+
"- ORG (Refers to named groups or organizations)\n"
|
88 |
+
"- PER (Refers to individual people or named groups of people)\n"
|
89 |
+
"- LOC (Refers to physical places or natural landmarks)\n"
|
90 |
+
"- MISC (Refers to entities that don't fit into standard categories).\n"
|
91 |
+
"Prepend B- to the first token of a given entity and I- to the remaining ones if they exist.\n"
|
92 |
+
"If a token is not a named entity, label it as O.\n"
|
93 |
+
f"Input: {tokens}\n"
|
94 |
+
"Marked:"
|
95 |
+
)
|
96 |
+
return call_model(prompt, temperature=0.1)
|
97 |
+
|
98 |
+
def grammar_checker(source_lang, sentence):
|
99 |
+
"""
|
100 |
+
Grammar checker prompt:
|
101 |
+
Fix any mistakes in the given source_lang sentence or keep it unedited if correct.
|
102 |
+
"""
|
103 |
+
prompt = (
|
104 |
+
f"Please fix any mistakes in the following {source_lang} sentence or keep it unedited if it's correct.\n"
|
105 |
+
f"Sentence: {sentence}\n"
|
106 |
+
f"Corrected:"
|
107 |
+
)
|
108 |
+
return call_model(prompt, temperature=0.1)
|
109 |
+
|
110 |
+
# ------------------------
|
111 |
+
# 3) Gradio UI
|
112 |
+
# ------------------------
|
113 |
+
with gr.Blocks() as demo:
|
114 |
+
gr.Markdown("## SalamandraTA-7B-Instruct Demo")
|
115 |
+
gr.Markdown(
|
116 |
+
"This Gradio app demonstrates various use-cases for the **SalamandraTA-7B-Instruct** model, including:\n"
|
117 |
+
"1. General Translation\n"
|
118 |
+
"2. Post-editing\n"
|
119 |
+
"3. Document-level Translation\n"
|
120 |
+
"4. Named-Entity Recognition (NER)\n"
|
121 |
+
"5. Grammar Checking"
|
122 |
+
)
|
123 |
+
|
124 |
+
with gr.Tab("1. General Translation"):
|
125 |
+
gr.Markdown("### General Translation")
|
126 |
+
src_lang_gt = gr.Textbox(label="Source Language", value="Spanish")
|
127 |
+
tgt_lang_gt = gr.Textbox(label="Target Language", value="English")
|
128 |
+
text_gt = gr.Textbox(label="Text to Translate", lines=4, value="Ayer se fue, tomó sus cosas y se puso a navegar.")
|
129 |
+
translate_button = gr.Button("Translate")
|
130 |
+
output_gt = gr.Textbox(label="Translation Output", lines=4)
|
131 |
+
translate_button.click(fn=general_translation,
|
132 |
+
inputs=[src_lang_gt, tgt_lang_gt, text_gt],
|
133 |
+
outputs=output_gt)
|
134 |
+
|
135 |
+
with gr.Tab("2. Post-editing"):
|
136 |
+
gr.Markdown("### Post-editing (Source → Target)")
|
137 |
+
src_lang_pe = gr.Textbox(label="Source Language", value="Catalan")
|
138 |
+
tgt_lang_pe = gr.Textbox(label="Target Language", value="English")
|
139 |
+
source_text_pe = gr.Textbox(label="Source Text", lines=2, value="Rafael Nadal i Maria Magdalena van inspirar a una generació sencera.")
|
140 |
+
mt_text_pe = gr.Textbox(label="Machine Translation", lines=2, value="Rafael Christmas and Maria the Muffin inspired an entire generation each in their own way.")
|
141 |
+
post_edit_button = gr.Button("Post-edit")
|
142 |
+
output_pe = gr.Textbox(label="Post-edited Text", lines=4)
|
143 |
+
post_edit_button.click(fn=post_editing,
|
144 |
+
inputs=[src_lang_pe, tgt_lang_pe, source_text_pe, mt_text_pe],
|
145 |
+
outputs=output_pe)
|
146 |
+
|
147 |
+
with gr.Tab("3. Document-level Translation"):
|
148 |
+
gr.Markdown("### Document-level Translation")
|
149 |
+
src_lang_doc = gr.Textbox(label="Source Language", value="English")
|
150 |
+
tgt_lang_doc = gr.Textbox(label="Target Language", value="Asturian")
|
151 |
+
doc_text = gr.Textbox(label="Document Text (multiple paragraphs allowed)",
|
152 |
+
lines=8,
|
153 |
+
value=("President Donald Trump, who campaigned on promises to crack down on illegal immigration, "
|
154 |
+
"has raised alarms in the U.S. dairy industry with his threat to impose 25% tariffs on Mexico "
|
155 |
+
"and Canada by February 2025."))
|
156 |
+
doc_button = gr.Button("Translate Document")
|
157 |
+
doc_output = gr.Textbox(label="Document-level Translation Output", lines=8)
|
158 |
+
doc_button.click(fn=document_level_translation,
|
159 |
+
inputs=[src_lang_doc, tgt_lang_doc, doc_text],
|
160 |
+
outputs=doc_output)
|
161 |
+
|
162 |
+
with gr.Tab("4. Named-Entity Recognition"):
|
163 |
+
gr.Markdown("### Named-Entity Recognition (NER)")
|
164 |
+
text_ner = gr.Textbox(
|
165 |
+
label="Tokenized Text (space-separated tokens)",
|
166 |
+
lines=2,
|
167 |
+
value="La defensa del antiguo responsable de la RFEF confirma que interpondrá un recurso."
|
168 |
+
)
|
169 |
+
ner_button = gr.Button("Run NER")
|
170 |
+
ner_output = gr.Textbox(label="NER Output", lines=6)
|
171 |
+
ner_button.click(fn=named_entity_recognition,
|
172 |
+
inputs=[text_ner],
|
173 |
+
outputs=ner_output)
|
174 |
+
|
175 |
+
with gr.Tab("5. Grammar Checker"):
|
176 |
+
gr.Markdown("### Grammar Checker")
|
177 |
+
src_lang_gc = gr.Textbox(label="Source Language", value="Catalan")
|
178 |
+
text_gc = gr.Textbox(label="Sentence to Check",
|
179 |
+
lines=2,
|
180 |
+
value="Entonses, el meu jefe m’ha dit que he de treballar els fins de setmana.")
|
181 |
+
gc_button = gr.Button("Check Grammar")
|
182 |
+
gc_output = gr.Textbox(label="Corrected Sentence", lines=2)
|
183 |
+
gc_button.click(fn=grammar_checker,
|
184 |
+
inputs=[src_lang_gc, text_gc],
|
185 |
+
outputs=gc_output)
|
186 |
+
|
187 |
+
demo.launch()
|