Spaces:
Sleeping
Sleeping
import gradio as gr | |
from gradio import ChatMessage | |
import json | |
from openai import OpenAI | |
from tools import tools, oitools | |
from dotenv import load_dotenv | |
import os | |
import re | |
load_dotenv(".env") | |
HF_TOKEN = os.environ["HF_TOKEN"] | |
BASE_URL = os.environ["BASE_URL"] | |
SYSTEM_PROMPT_TEMPLATE = """You are an AI assistant designed to assist users with a hotel booking and information system. Your role is to provide detailed and accurate information about the hotel, including available accommodations, facilities, dining options, and reservation services. You can check room availability, assist with bookings, modify or cancel reservations, and answer general inquiries about the hotel. | |
Maintain clarity, conciseness, and relevance in your responses, ensuring a seamless user experience. Always respond in the same **language as the user’s query** to preserve their preferred language. | |
""" | |
client = OpenAI( | |
base_url=BASE_URL + "/v1", | |
api_key=HF_TOKEN | |
) | |
def clean_json_string(json_str): | |
# Strip spaces and '}' from the end, then add back a single '}' | |
return re.sub(r'[ ,}\s]+$', '', json_str) + '}' | |
def complation(history, model, system_prompt, tools=None): | |
messages = [{"role": "system", "content": system_prompt}] | |
for msg in history: | |
if type(msg) == dict: | |
msg = ChatMessage(**msg) | |
if msg.role == "assistant" and len(msg.options) > 0 and msg.options[0]["label"] == "tool_calls": | |
tools_calls = json.loads(msg.options[0]["value"]) | |
messages.append({"role": "assistant", "tool_calls": tools_calls}) | |
messages.append({"role": "tool", "content": msg.content}) | |
else: | |
messages.append({"role": msg.role, "content": msg.content}) | |
if not tools: | |
return client.chat.completions.create( | |
model=model, | |
messages=messages, | |
stream=True, | |
max_tokens=1000, | |
temperature=0.4, | |
frequency_penalty=1, | |
# stop=["<|em_end|>"], | |
extra_body = { | |
"repetition_penalty": 1.1, | |
} | |
) | |
return client.chat.completions.create( | |
model=model, | |
messages=messages, | |
stream=True, | |
max_tokens=1000, | |
temperature=0.4, | |
tool_choice="auto", | |
tools=tools, | |
frequency_penalty=1, | |
# stop=["<|em_end|>"], | |
extra_body = { | |
"repetition_penalty": 1.1, | |
} | |
) | |
def respond( | |
message:any, | |
history:any, | |
additional_inputs, | |
): | |
try: | |
models = client.models.list() | |
model = models.data[0].id | |
except Exception as err: | |
gr.Warning("The model is initializing. Please wait; this may take 5 to 10 minutes ⏳.", duration=20) | |
raise err | |
response = "" | |
arguments = "" | |
name = "" | |
history.append( | |
ChatMessage( | |
role="user", | |
content=message, | |
) | |
) | |
completion = complation(history=history, tools=oitools, model=model, system_prompt=additional_inputs) | |
appended = False | |
for chunk in completion: | |
if len(chunk.choices) > 0 and chunk.choices[0].delta.tool_calls and len(chunk.choices[0].delta.tool_calls) > 0 : | |
call = chunk.choices[0].delta.tool_calls[0] | |
if call.function.name: | |
name=call.function.name | |
if call.function.arguments: | |
arguments += call.function.arguments | |
elif chunk.choices[0].delta.content: | |
response += chunk.choices[0].delta.content | |
if not appended: | |
history.append( | |
ChatMessage( | |
role="assistant", | |
content="", | |
) | |
) | |
appended = True | |
history[-1].content = response | |
yield history[-1] | |
if not arguments: | |
arguments = "{}" | |
else: | |
arguments = clean_json_string(arguments) | |
if name: | |
result = f"💥 Error using tool {name}, tools doesn't exists" | |
print("arguments:", arguments) | |
json_arguments = json.loads(arguments) | |
history.append( | |
ChatMessage( | |
role="assistant", | |
content="", | |
metadata= {"title": f"🛠️ Using tool '{name}', arguments: {json.dumps(json_arguments, ensure_ascii=False)}"}, | |
options=[{"label":"tool_calls", "value": json.dumps([{"id": "call_FthC9qRpsL5kBpwwyw6c7j4k","function": {"arguments": arguments,"name": name},"type": "function"}])}] | |
) | |
) | |
yield history[-1] | |
if tools.get(name): | |
result = str(tools[name].invoke(input=json_arguments)) | |
result = json.dumps({name: result}, ensure_ascii=False) | |
history[-1] = ChatMessage( | |
role="assistant", | |
content=result, | |
metadata= {"title": f"🛠️ Used tool '{name}', arguments: {json.dumps(json_arguments, ensure_ascii=False)}"}, | |
options=[{"label":"tool_calls", "value": json.dumps([{"id": "call_FthC9qRpsL5kBpwwyw6c7j4k","function": {"arguments": arguments,"name": name},"type": "function"}])}] | |
) | |
yield history[-1] | |
completion = complation(history=history, tools=oitools, model=model, system_prompt=additional_inputs) | |
result = "" | |
appended = False | |
for chunk in completion: | |
print(chunk) | |
if chunk.choices[0].delta.content: | |
result += chunk.choices[0].delta.content | |
if not appended: | |
history.append( | |
ChatMessage( | |
role="assistant", | |
content="", | |
) | |
) | |
appended = True | |
history[-1].content = result | |
yield history[-2:] | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
if __name__ == "__main__": | |
system_prompt = gr.Textbox(label="System propmt", value=SYSTEM_PROMPT_TEMPLATE, lines=3) | |
demo = gr.ChatInterface(respond, type="messages", additional_inputs=[system_prompt]) | |
demo.launch() |