File size: 17,939 Bytes
bc2085d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import os
import imageio
import torch
import wandb
import numpy as np
import pytorch_lightning as pl
import torch.nn.functional as F
from module.model_2d import Encoder, Decoder, DiagonalGaussianDistribution, Encoder_GroupConv, Decoder_GroupConv, Encoder_GroupConv_LateFusion, Decoder_GroupConv_LateFusion
from utility.initialize import instantiate_from_config
from utility.triplane_renderer.renderer import get_embedder, NeRF, run_network, render_path1, to8b, img2mse, mse2psnr
from utility.triplane_renderer.eg3d_renderer import Renderer_TriPlane
from module.quantise import VectorQuantiser
from module.quantize_taming import EMAVectorQuantizer, VectorQuantizer2, QuantizeEMAReset
class CVQVAE(pl.LightningModule):
def __init__(self,
ddconfig,
lossconfig,
embed_dim,
learning_rate=1e-3,
ckpt_path=None,
ignore_keys=[],
colorize_nlabels=None,
monitor=None,
decoder_ckpt=None,
norm=True,
renderer_type='nerf',
is_cvqvae=False,
renderer_config=dict(
rgbnet_dim=18,
rgbnet_width=128,
viewpe=0,
feape=0
),
vector_quantizer_config=dict(
num_embed=1024,
beta=0.25,
distance='cos',
anchor='closest',
first_batch=False,
contras_loss=True,
)
):
super().__init__()
self.save_hyperparameters()
self.norm = norm
self.renderer_config = renderer_config
self.learning_rate = learning_rate
ddconfig['double_z'] = False
self.encoder = Encoder_GroupConv(**ddconfig)
self.decoder = Decoder_GroupConv(**ddconfig)
self.lossconfig = lossconfig
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
self.embed_dim = embed_dim
if colorize_nlabels is not None:
assert type(colorize_nlabels)==int
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
if monitor is not None:
self.monitor = monitor
self.decoder_ckpt = decoder_ckpt
self.renderer_type = renderer_type
if decoder_ckpt is not None:
self.triplane_decoder, self.triplane_render_kwargs = self.create_eg3d_decoder(decoder_ckpt)
vector_quantizer_config['embed_dim'] = embed_dim
if is_cvqvae:
self.vector_quantizer = VectorQuantiser(
**vector_quantizer_config
)
else:
self.vector_quantizer = EMAVectorQuantizer(
n_embed=vector_quantizer_config['num_embed'],
codebook_dim = embed_dim,
beta=vector_quantizer_config['beta']
)
# self.vector_quantizer = VectorQuantizer2(
# n_e = vector_quantizer_config['num_embed'],
# e_dim = embed_dim,
# beta = vector_quantizer_config['beta']
# )
# self.vector_quantizer = QuantizeEMAReset(
# nb_code = vector_quantizer_config['num_embed'],
# code_dim = embed_dim,
# mu = vector_quantizer_config['beta'],
# )
self.psum = torch.zeros([1])
self.psum_sq = torch.zeros([1])
self.psum_min = torch.zeros([1])
self.psum_max = torch.zeros([1])
self.count = 0
self.len_dset = 0
self.latent_list = []
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
self.load_state_dict(sd, strict=True)
print(f"Restored from {path}")
def encode(self, x, rollout=False):
if rollout:
x = self.rollout(x)
h = self.encoder(x)
moments = self.quant_conv(h)
z_q, loss, (perplexity, min_encodings, encoding_indices) = self.vector_quantizer(moments)
return z_q, loss, perplexity, encoding_indices
def decode(self, z, unrollout=False):
z = self.post_quant_conv(z)
dec = self.decoder(z)
if unrollout:
dec = self.unrollout(dec)
return dec
def forward(self, input):
z_q, loss, perplexity, encoding_indices = self.encode(input)
dec = self.decode(z_q)
return dec, loss, perplexity, encoding_indices
def rollout(self, triplane):
res = triplane.shape[-1]
ch = triplane.shape[1]
triplane = triplane.reshape(-1, 3, ch//3, res, res).permute(0, 2, 3, 1, 4).reshape(-1, ch//3, res, 3 * res)
return triplane
def to3daware(self, triplane):
res = triplane.shape[-2]
plane1 = triplane[..., :res]
plane2 = triplane[..., res:2*res]
plane3 = triplane[..., 2*res:3*res]
x_mp = torch.nn.MaxPool2d((res, 1))
y_mp = torch.nn.MaxPool2d((1, res))
x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2)
y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2)
# for plane1
plane21 = x_mp_rep(plane2)
plane31 = torch.flip(y_mp_rep(plane3), (3,))
new_plane1 = torch.cat([plane1, plane21, plane31], 1)
# for plane2
plane12 = y_mp_rep(plane1)
plane32 = x_mp_rep(plane3)
new_plane2 = torch.cat([plane2, plane12, plane32], 1)
# for plane3
plane13 = torch.flip(x_mp_rep(plane1), (2,))
plane23 = y_mp_rep(plane2)
new_plane3 = torch.cat([plane3, plane13, plane23], 1)
new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous()
return new_plane
def unrollout(self, triplane):
res = triplane.shape[-2]
ch = 3 * triplane.shape[1]
triplane = triplane.reshape(-1, ch//3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, ch, res, res)
return triplane
def training_step(self, batch, batch_idx):
inputs = self.rollout(batch['triplane'])
reconstructions, vq_loss, perplexity, encoding_indices = self(inputs)
aeloss, log_dict_ae = self.loss(inputs, reconstructions, vq_loss, prefix='train/', batch=batch)
log_dict_ae['train/perplexity'] = perplexity
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
return aeloss
def validation_step(self, batch, batch_idx):
inputs = self.rollout(batch['triplane'])
reconstructions, vq_loss, perplexity, encoding_indices = self(inputs)
aeloss, log_dict_ae = self.loss(inputs, reconstructions, vq_loss, prefix='val/', batch=None)
log_dict_ae['val/perplexity'] = perplexity
self.log_dict(log_dict_ae)
reconstructions = self.unrollout(reconstructions)
psnr_list = [] # between rec and gt
psnr_input_list = [] # between input and gt
psnr_rec_list = [] # between input and rec
batch_size = inputs.shape[0]
for b in range(batch_size):
rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder(
batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b],
)
rgb, cur_psnr_list = self.render_triplane_eg3d_decoder(
reconstructions[b:b+1], batch['batch_rays'][b], batch['img'][b],
)
cur_psnr_list_rec = []
for i in range(rgb.shape[0]):
cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i])))
rgb_input = to8b(rgb_input.detach().cpu().numpy())
rgb_gt = to8b(batch['img'][b].detach().cpu().numpy())
rgb = to8b(rgb.detach().cpu().numpy())
if b % 4 == 0 and batch_idx < 10:
rgb_all = np.concatenate([rgb_gt[1], rgb_input[1], rgb[1]], 1)
self.logger.experiment.log({
"val/vis": [wandb.Image(rgb_all)],
})
psnr_list += cur_psnr_list
psnr_input_list += cur_psnr_list_input
psnr_rec_list += cur_psnr_list_rec
self.log("val/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True)
self.log("val/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True)
self.log("val/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True)
return self.log_dict
def to_rgb(self, plane):
x = plane.float()
if not hasattr(self, "colorize"):
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
x = torch.nn.functional.conv2d(x, weight=self.colorize)
x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8)
return x
def to_rgb_triplane(self, plane):
x = plane.float()
if not hasattr(self, "colorize_triplane"):
self.colorize_triplane = torch.randn(3, x.shape[1], 1, 1).to(x)
x = torch.nn.functional.conv2d(x, weight=self.colorize_triplane)
x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8)
return x
def to_rgb_3daware(self, plane):
x = plane.float()
if not hasattr(self, "colorize_3daware"):
self.colorize_3daware = torch.randn(3, x.shape[1], 1, 1).to(x)
x = torch.nn.functional.conv2d(x, weight=self.colorize_3daware)
x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8)
return x
def test_step(self, batch, batch_idx):
inputs = self.rollout(batch['triplane'])
reconstructions, vq_loss, perplexity, encoding_indices = self(inputs)
aeloss, log_dict_ae = self.loss(inputs, reconstructions, vq_loss, prefix='test/', batch=None)
log_dict_ae['test/perplexity'] = perplexity
self.log_dict(log_dict_ae)
batch_size = inputs.shape[0]
psnr_list = [] # between rec and gt
psnr_input_list = [] # between input and gt
psnr_rec_list = [] # between input and rec
colorize_triplane_input = self.to_rgb_triplane(inputs)[0]
colorize_triplane_output = self.to_rgb_triplane(reconstructions)[0]
reconstructions = self.unrollout(reconstructions)
if self.norm:
assert NotImplementedError
else:
reconstructions_unnormalize = reconstructions
if True:
for b in range(batch_size):
rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder(
batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b],
)
rgb, cur_psnr_list = self.render_triplane_eg3d_decoder(
reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img'][b],
)
cur_psnr_list_rec = []
for i in range(rgb.shape[0]):
cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i])))
rgb_input = to8b(rgb_input.detach().cpu().numpy())
rgb_gt = to8b(batch['img'][b].detach().cpu().numpy())
rgb = to8b(rgb.detach().cpu().numpy())
if batch_idx < 10:
imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_input.png".format(batch_idx, b)), rgb_input[1])
imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_rec.png".format(batch_idx, b)), rgb[1])
imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_gt.png".format(batch_idx, b)), rgb_gt[1])
psnr_list += cur_psnr_list
psnr_input_list += cur_psnr_list_input
psnr_rec_list += cur_psnr_list_rec
self.log("test/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True)
self.log("test/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True)
self.log("test/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True)
def on_test_epoch_end(self):
mean = self.psum / self.count
mean_min = self.psum_min / self.len_dset
mean_max = self.psum_max / self.len_dset
var = (self.psum_sq / self.count) - (mean ** 2)
std = torch.sqrt(var)
print("mean min: {}".format(mean_min))
print("mean max: {}".format(mean_max))
print("mean: {}".format(mean))
print("std: {}".format(std))
latent = np.concatenate(self.latent_list)
q75, q25 = np.percentile(latent.reshape(-1), [75 ,25])
median = np.median(latent.reshape(-1))
iqr = q75 - q25
norm_iqr = iqr * 0.7413
print("Norm IQR: {}".format(norm_iqr))
print("Inverse Norm IQR: {}".format(1/norm_iqr))
print("Median: {}".format(median))
def loss(self, inputs, reconstructions, vq_loss, prefix, batch=None):
reconstructions = reconstructions.contiguous()
rec_loss = F.mse_loss(inputs.contiguous(), reconstructions)
loss = self.lossconfig.rec_weight * rec_loss + self.lossconfig.vq_weight * vq_loss
ret_dict = {
prefix+'mean_rec_loss': torch.abs(inputs.contiguous() - reconstructions.contiguous()).mean().detach(),
prefix+'rec_loss': rec_loss,
prefix+'vq_loss': vq_loss,
prefix+'loss': loss,
}
render_weight = self.lossconfig.get("render_weight", 0)
tv_weight = self.lossconfig.get("tv_weight", 0)
l1_weight = self.lossconfig.get("l1_weight", 0)
latent_tv_weight = self.lossconfig.get("latent_tv_weight", 0)
latent_l1_weight = self.lossconfig.get("latent_l1_weight", 0)
triplane_rec = self.unrollout(reconstructions)
if render_weight > 0 and batch is not None:
rgb_rendered, target = self.render_triplane_eg3d_decoder_sample_pixel(triplane_rec, batch['batch_rays'], batch['img'])
render_loss = F.mse(rgb_rendered, target)
loss += render_weight * render_loss
ret_dict[prefix + 'render_loss'] = render_loss
if tv_weight > 0:
tvloss_y = torch.abs(triplane_rec[:, :, :-1] - triplane_rec[:, :, 1:]).mean()
tvloss_x = torch.abs(triplane_rec[:, :, :, :-1] - triplane_rec[:, :, :, 1:]).mean()
tvloss = tvloss_y + tvloss_x
loss += tv_weight * tvloss
ret_dict[prefix + 'tv_loss'] = tvloss
if l1_weight > 0:
l1 = (triplane_rec ** 2).mean()
loss += l1_weight * l1
ret_dict[prefix + 'l1_loss'] = l1
ret_dict[prefix+'loss'] = loss
return loss, ret_dict
def create_eg3d_decoder(self, decoder_ckpt):
triplane_decoder = Renderer_TriPlane(**self.renderer_config)
pretrain_pth = torch.load(decoder_ckpt, map_location='cpu')
pretrain_pth = {
'.'.join(k.split('.')[1:]): v for k, v in pretrain_pth.items()
}
# import pdb; pdb.set_trace()
triplane_decoder.load_state_dict(pretrain_pth)
render_kwargs = {
'depth_resolution': 128,
'disparity_space_sampling': False,
'box_warp': 2.4,
'depth_resolution_importance': 128,
'clamp_mode': 'softplus',
'white_back': True,
'det': True
}
return triplane_decoder, render_kwargs
def render_triplane_eg3d_decoder(self, triplane, batch_rays, target):
ray_o = batch_rays[:, 0]
ray_d = batch_rays[:, 1]
psnr_list = []
rec_img_list = []
res = triplane.shape[-2]
for i in range(ray_o.shape[0]):
with torch.no_grad():
render_out = self.triplane_decoder(triplane.reshape(1, 3, -1, res, res),
ray_o[i:i+1], ray_d[i:i+1], self.triplane_render_kwargs, whole_img=True, tvloss=False)
rec_img = render_out['rgb_marched'].permute(0, 2, 3, 1)
psnr = mse2psnr(img2mse(rec_img[0], target[i]))
psnr_list.append(psnr)
rec_img_list.append(rec_img)
return torch.cat(rec_img_list, 0), psnr_list
def render_triplane_eg3d_decoder_sample_pixel(self, triplane, batch_rays, target, sample_num=1024):
assert batch_rays.shape[1] == 1
sel = torch.randint(batch_rays.shape[-2], [sample_num])
ray_o = batch_rays[:, 0, 0, sel]
ray_d = batch_rays[:, 0, 1, sel]
res = triplane.shape[-2]
render_out = self.triplane_decoder(triplane.reshape(triplane.shape[0], 3, -1, res, res),
ray_o, ray_d, self.triplane_render_kwargs, whole_img=False, tvloss=False)
rec_img = render_out['rgb_marched']
target = target.reshape(triplane.shape[0], -1, 3)[:, sel, :]
return rec_img, target
def configure_optimizers(self):
lr = self.learning_rate
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
list(self.decoder.parameters())+
list(self.quant_conv.parameters())+
list(self.post_quant_conv.parameters())+
list(self.vector_quantizer.parameters()),
lr=lr)
return opt_ae
|